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1. Introduction

Let (%;, #,), 1 <i<n, be measure spaces let Pe.#'(%,, 8B, - the set of probabili-
3
ty measures on %, - 1Li<n, let (% B)= X (%, %) and define
i=1

MHP,...,P

H,

):={Pe " (¥,%); P"=PB,1<i<n},

where #;: & —%; is the i-th projection and P™ is the image of P under x,.

The following simple characterization of #(P,...,P) is wellknown under
the name of Fréchet-bounds:

Let Pe.#' (%, ), then Pe.#(P, ..., P) if and only if for all A,e%, 1<i<n,

(ZPf(Ai)—m—l)) <P(A; % ... x A,)< min B(4) (L.1)
i=1 + 1=izn

where for aeR', a, =max{a,0}. Though very simple the bounds in (1.1) are
useful in many applications (cf. [5, 11, 16, 14]).

In the present paper we prove that for fixed 4,,..., 4, the bounds in (1.1)
are attained. Furthermore, we shall derive sharp upper and lower bounds for
{{f@dP;Pe(P,...,R)} for more general functions ¢ on Z.

In the special case that %,={0,1}, 1<i<n, and p,=PB{1}, 1<i<n, the
Fréchet-bounds are identical with the Bonferoni-bounds of first order for prob-

abilities P (ﬂAi) when p;=P(A,) are given (Note that (1,,,...,1, ) has under
P=1

P a distribution in .#(F,...,P) where F, are binomial B(l,p,)-distributed.) So
our result especially implies the sharpness of Bonferoni-bounds of first order
which was proved for the first time by Fréchet [4].

In the general case there are only few indications for the solution of the
problem of sharpness of Fréchet-bounds. The original problem of Fréchet [5]
was to find conditions for the existence of an element Pe.# (P, P,) such that
P=p, where p is a given measure on %, ® #,. The solution of this problem
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has been given in various generality and by very interesting methods by Fré-
chet [5], Dall’Aglio [1], Kellerer [9], Strassen [15] and Hansel, Troallic [7]:
There exists an element Pe.# (P, P,) with P<p if and only if for all 4,4,
i=1,2
WA x A;)Z P (4,)+B(4,)— 1. (1.2)

Though indicating in some sense the sharpness of Fréchet’s lower bound, the
left- and right-hand sides in (1.1) do not define probability measures. In an in-
teresting paper of Dall’Aglio [1], Theorem 3, it was shown that even in the set
of distribution functions of elements of .#(P,...,P) (in the case (%, %)
=(R', #')) for n>3 there is only in very exceptional cases a lower bound.

2. A Generalization of the Fréchet-bounds

Let B(%Z, #) denote the set of bounded, #-measurable functions on (%, %) and
define for ¢ € B(Z, %)

m=inf {{@dP; Pe #(P,, ..., B)}

M=sup{{pdP; PeM(P,,...,P)}. 1)

The determination of m, M by means of duality theory was given by Gaffke,
Riischendorf [6] in the case where 4 are compact and ¢ is continuous. For
the application to Fréchet-bounds a generalization of this result is needed. Let

ba(P,, ..., P) be the set of finitely additive, nonnegative set functions on @ %,
with i- th marglnal P, 1<i<n, and define i=

mo=inf {{@dP; Peba(P,,..., B)}

2.2
M,=sup{{@dP; Peba(P,,...,R)} @2
Prdposition 1. If ¢ eB(%, B), then
m0=sup{z (f,dP; f.eB(%;, B), 1<iZn, ), fion,é(p} (2.3)
i=1 i=1

and there exist solutions of both sides in (2.3).

Proof. The proof of Proposition 1 is similar to that of Theorem 1, Proposi-
tion 2 and Corollary 3 of [6]. We only indicate a sketch of the proof.

Let Z=B(% A), X =[] B(%,, #,), F: X>R" defined by

F(fy, s fo fod V:X—2Z
defined by
ll’(fl’""fn):—.z inTL’i, Zp=¢@ (24)
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and the cone €={feB(%, %);  z0}. Choosing norm-topology on B(%, %) the
dual space (B(Z, #))* equals the set of bounded, additive set functions on 4.
By this choice similarly to the proof of Theorem 1 in [6] the following duality
theorem of Isii [8], Theorem 2, 3 can be applied.

sup {F (x); xe X, Y/(x)+ 2020}

=inf{z*(z,); z%e Z*, z* 20, z* (Y (x)) + F(x) <0, Vxe X}. @)

The left hand side of (2.5) is identical to

Sup{}: {fidP; fie B(Z,, B), 1<i<n, Y, fi%éw}
i=1 i=1

while the right hand side of (2.5) is identical to
inf{f@dP; Peba(P,, ..., P)}.

The proof of existence of a solution of the right hand side of (2.3) is anal-
ogously to the proof of Proposition 2 of [6], since only boundedness of ¢ has
been used in this proof. The existence of a solution of the left hand side follows
from Theorem 2.1 of [8]. I

Remark. a) Proposition 2 implies that

Mo=iﬂf{2 [fidB; fie B(Z, &), 1<i<n, } fif’%f%fﬂ} (2.6)

i=1 i=1

and also the existence of solutions.

b) ba(P, ..., P) is by Alaoglu’s Theorem (cf. [3], Theorem 2, p.424) com-
pact in weak*-topology. This again implies the existence of a solution of the
left hand side of (2.3). _|

We now want to give some conditions which imply that my=m and M,

3

=M. We need the following lemmas. Let # (
by [] %.
Pe=1
Lemma 2. If (%, %), 1<i<n, are polish spaces (with Borel c-Algebra %) and
Peba(P,, ..., B), then P is c-additive on & ( 95’,.).
i=1

i

,%‘i) be the algebra generated
=1

n

Proof. If Ae R <]_[ %‘i) then there exist 4/e %, 1=<j<m, 1 <i<n, such that 4

m i=1
=3 Al x...x Al For 4, €R,, k=+i,
== 1
P=P(A; x...xA;_;% - XA, 1 X...xA,)

considered as map on %, is dominated by P, B(4)<P(4), VA e %, and, there-
fore, is g-additive on 4, 1<ign. Since (%, 4,), 1 <i<n, are polish F, are tight
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measures on %;, 1<i<n. Therefore, there exist compact subsets T/ Al
1<i<n, 1<j<m, such that for >0

P(Ai x ... x A)SPAI x...x4l_, x]’;lj)_i_%
j ; L 2&
SPAyx . x T xTh+—=..
mn
. ) e
<P(T}x..xTH+—.
m

This implies P(4)< Y, P(T{ x... x T;)+¢ and, therefore, by Proposition 1.6.2

j=1

of Neveu [12] P is s-additive on % (H %). J

i=1

Let (Y, %) be a topological space, let % be an algebra on Y. A non-negative
content y on .« (4) is called outer (inner) regular if

p(U)=inf{u(0); 0e€ A (%), U0},
(u(U)=sup {u(F); F closed, Fe A (#), F<U})

for all Ues#/ (). (This is a specialization of Definition 11, p. 137 of [3]) If uis
bounded, then outer regularity of u is equivalent to inner regularity of g and u
is called regular in this case.

Lemma 3. If % contains a countable base of the topology of Y and if P is a
bounded, nonnegative, regular content on o/ (R) which is o-additive on %, then P
is g-additive on ().
Proof. Let P be the unique extension of P/# as measure on /(%) and let Oe
%. Then there exist 0,e #n% with O= () O,. This implies P(0)=P (U Oi)

n i=1 i=1
=P (U Oi), V¥ neN and, therefore,

i=1

P(O)=P(0), VO0e%. (2.7)

i=

By outer regularity of P (2.7) implies for all closed sets F e o/ (%)

P(F)=inf{P(0); 0€%, 0> F}
>inf{P(0); 0%, 0o F}=P(F)=P(F).

This implies P(0)=P(0) for all 0¥ and, therefore, for A€ o/ (XR)
P(A)=inf{P(0); 0c%, 0> A4}
—inf{F(0); 0%, 0> 4} = P(4)
and, similarly, P(4°) = P(A°) which implies P=P. _|

Let rba(%, #) denote the set of regular, bounded, nonnegative contents on
(%, B).
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Corollary 4. If (%, B,), 1<i=<n, are polish spaces, then
rba(®, B)ba(P,, ..., P)=M(P,, ..., P). |

For Peba(P,, ..., P) let I} (32”,9? (l—[ %),P) denote the set of P-integr-
i=1 n
able functions where P is considered as content on Z% (l_[ ﬂi) {cf. Dunford,
Schwartz [3], Def. 17, p. 112) and define i=1

Lpa®,...P)= () L%%,%(ﬂgi)m).

Peba(Py,...,Pn)

n
I*ba(P, ..., P)) contains B (%,9? (H %’l)) - the closure of all finite linear
i=1
combinations of characteristic functions of sets in £ (H %‘i) w.r.t. uniform
i=1
metric. Let C,(%) denote the set of bounded, continuous functions on . The
following theorem is the main result of this section.

n

Theorem 5. Let (%, 4,), 1 £i=<n, be polish spaces.

a) If oeL'(ba(P,, ..., P)U Cy(Z), then for each Peba(P,, ..., P) there ex-
istsa Pe #(P,, ..., B) with { gdP={ @ dP. Especially, mq=m and M,=M.

b) If P*e M(P,, ..., P) and peL'(ba(P,, ..., ) Cy(%X), then [ o dP*=m if

and only if there exist f*eB(Z, #;), 1<isn, with ) f*om<¢ and

n i=1
P*{Z fi*onl:(p}zl.
i=1

Proof. a) Each Peba(P,, ..., P) considered as content on % (H@l) has by
i=1
Lemma 2 a unique extension to an element P of .#(P,, ..., P). Therefore, by
Lemma 1, p. 165 of [3] it holds for pe L (ba(P,, ..., B)) that [@dP=[¢pdP.
If peC,(%Z) we can replace in the proof of Proposition 1 B(%;, %; by
C,(Z) and B(Z, ) by C,(%¥) and obtain from (2.5) using that rba(Z, Z(¥))
={ze(Cy(Z)*; 220}

inf{[ pdP; Perba(Z, #(®)), | fiom,dP=[f;,dP, ¥ fie Cy(Z), 1Si<n}

:sup{ZjﬁdB;fier(%’i), 1<i<n, Zfionéqa} (2.8)
i=1 i=1

where 4 is the system of open sets in 4. Using Lemmas 2, 3 and Corollary 4
cach Perba(Z, (%)) with marginals P,, ..., P, has a unique g-additive exten-
sion to an element of rba(%, B)nba(P,, ..., B)=H#(P,, ..., P) such that inte-
grals w.r.t. elements of C,(%) are identical. Therefore, the left hand side of (2.8)
equals m. The right hand side of (2.8) is easily shown to be identical to

Sup{z [f;dPB; ;e B, %), 1<izn, } fioniéw}-
i=1

i=1

b) is immediate from a) and Proposition 1. _I
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Remark. a) A very interesting result of Douglas [2], Theorem 1 implies that an
clement P of .#(P,, ..., P) is an extreme point of .#(P,, ..., B) if and only if

={Z fiem; fie B(Z,, B), léién}
i=1

is dense in L'(P). An extension of this result to ba(P, ..., P) is possible by
techniques which are used in the proof of Theorem 1 of Plachky [13]. Clearly
the inf and sup of (2.1) are attained in extreme points. Theorem 5 and Proposi-
tion 1 show that in this case one even can approximate ¢ by elements of F
which are less than or equal to ¢ (resp. larger than or equal).

b) A somewhat shorter proof of Corollary 4 (without reference to Lemma 3
could have been given by refering to Alexandroffs Theorem (cf. [3], Th. 13,
p. 138).

3. Sharpness of Fréchet-Bounds

The aim of this section is to prove that the bounds given in (1.1) are sharp.
Theorem 6. Let (%, #,), 1 Si<n, be polish spaces, then for all A,e%,, 1<i<n,

a) max {P(4, x...x4,); Pe #(P,,...,P)} 11
—min {F(4); 1<i<n}, G
b) min {P(4, X ... x A,); Pe M(P,, ..., P)}
= (X na)-=1)... 62)

Proof. a) Let
A=inf{z [ f,dP; f,e B(%;, B), 1<iZn, Zf,.onigl,,lxm”n} (3.3)
i=1 i=1
Let (f;) be admissible for (3.3) and define
a,=inf{f(x); xeZ}, 1=Zi=n,

then ) a,20. Define
i=1
={ign; ;<0}, fi=fi—a;, ieJ,
and

f=fimat——— Y a4,  ieJ—Jy, J={L, ..., n}.
Ji=1; = Jo 2 o

Then f,=20, 1<i<n and Z fom= Z fiem; such that (f) are admissible for

i=1

(3.3) and Z {fidP= Z | f P. Therefore, w.l.g we can assume, that ¢;>0,
1<ign., =t
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Define b,=inf{f,(x); x€4;}, 1<i<n, then b,=0, 1<i<n, and Zb>1

This implies that (f;*) are admissible, where i=1
f¥=b1,,15i=n, ZinnigZ(flA) T
i=1 i=1
=Y blom=) fi*om and ijd 22 Y bP(A)
i=1 i=1 i=1

Therefore,

——Il’lf{z b;P(4,); b;=0, 1<i<n, Zb—l}

i=1 i

—min {B(4); 1 Sisn}.

Now Theorem 5 and Proposition 1 imply (3.1).
b) Let

B:Sup{z j‘f;d‘Pl’ f;EB(%‘l: ‘@i)7
i=1 . (34)
1<iZn, ), f,.oniélm..‘mn}-

i=1

Let (f) be admissible for (3.4) and let b,=inf{f,(x); xeAf}, a,=inf{f(x);
x€A;} —b,, 1 <i<n. Then (f) is admissible for (3.4), where

fi=a;1, +b;, and f<f, 1<isn.

Therefore, w.lg. we may assume that f,=a,1, +b,, 1<i<n. With b=}’ b, ad-
missibility of (f}) is equivalent to =1

Za+b<1 and ) a;+b=<0, VJc{l, .., n}

i=1 jed

(3.5)

(¢ means strict inclusion) and

n

Bzmax{z a; P(A)+Db; (a), b satisfy (3.5)}.
If the max is attained then equality holds in at least one restriction of (3.5).

n

Case l. Y a;+b=1, then a,2a;,+ ) a,+b=1, 1<i<n, and

i=1 j*i

iaiPi(A)—i—b

i=1

a APMA)—-1)+

IA

I
= ”M=

i
-

By

(A4)—(m—1) (3.6)
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and the right hand side of (3.6) is attained for a,=1, 1<i<n, b=—(n—-1)
(which are admissible).

Case 2. There exists J, € {1, ...,n} with ) a;+b=0.If q,<0, define

jeldo
. Jag,  JFEi
(lj—{(), le
Then
Ya+b= Y a;+b=0, VJc{l,..n}
jeJ

jeJ~{i}

So (@), b are admissible and
Y. & P(4)+b= Z F(A)+b.

Therefore, w.l.g. we can assume that ¢,>0, 1 <i<n.

Case 2.a) Let |Jo|<n—1, then 4,20, 1<i<n, and ) a;+b=0 imply that q,

=0, YjeJ§ and, therefore, jeTo

Y. 4 P(4)+b= Z £(4)-1)=0. 3.7
i=1 eJo
So the max is obtained in this case for g;=0, 1<i<n.

Case 2.b) Let |Joj=n—1 and i¢J, such that ) a,4+b=0. This implies that for

all joe{l,...,n}, jo+i J*
Y a;+b=a+ Y a—) a,=a;,—a; =0,
J*jo J¥jo.i JjFi

and, therefore, ¢, <min {a;; j#i}. So in case 2b)
max{z a;P(A}); (a;), b admissible, ) aj+b=0}
j=1 j¥Fi

=max{z a;P(A); 0=2a;Za;, Vi1, aigl}

j=1
=max {aiPi(Ai)“" Z ai(P(4)—-1); 0=a;Zq;, j=*i, ai§1}
jFi
=max {a; F(4;) +a; ), (P(4)—1); 0=a;=1}
jFi

- (él P(A)—(n~ 1))+. (3.8)

(3.6), (3.7), (3.8) imply that

and, therefore, Theorem 5 and Proposition 1 imply (3.2). _
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From Theorem 5 and Theorem 6 we obtain
Corollary 7. Let A;€%,, 1 Li=<n, then there exists a Pe M (P, ..., B) with

a) P has support in []AOZ X xZ;,_xA5x...xZ, if P(A4)
= min F(4,) =1

1<ign

D=

b) P has support in U%lx...xij...x,%”ni]’ B(4)zn—-1
=1

i=1

I

¢) P has support in | ] & x...xASx ... xZ, if Y B(A)<n—1.
=1 i=1
Remark. ) 1t (%, #)=(R', #'), 1<i<n, A;=(—c0,x], 1Si<n, with xeR",
then for Pe #(P,, ..., P)
P(A,; x...xA,)=P(max x;<x).

1<ign

For this special case it has been shown in an interesting paper of Lai, Robbins
[10] that the bounds (3.2) are attained by an element P,e.# (P, ..., P) simul-
taneously for all xe R', in other words: the distribution of max x; is stochasti-
cally maximized by P, w.r.t. #(P,, ..., P). tEisn

b) With A=, x...x%,_, xA;x...x%, and p,=P(4;), 1<i<n, Theo-
rem 6 says that the upper and lower Fréchet-bounds for 4, x...x A4, are
identical with the Bonferoni-bounds of first order for Ay, A (Note that
P(A,x...x4,)=P (ﬂ /‘L))- This remark has for applications to simultaneous

i=1
confidence intervals some interesting consequences.

n
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