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Motivation

Term structure models (risk-free, credit risky, multi-curve) are typically
build from a family of fundamental instruments which offer at maturity

CT .

Under a suitable no-arbitrage criterion there exists an equivalent
martingale measure with respect to a certain numéraire, say X0, s.t.

P(t,T ) = EQ
[X0

t
X0

T
CT |Ft

]
.

If CT = 1 (interest rates), Heath, Jarrow and Morton proposed

P(t,T ) = e−
∫ T

t f (t,u)du (1)

Many events (ECB-interest rates, earning announcments, Brexit, etc. )
occur at predictable times (not totally inaccessible) such that (1) may
lead to arbitrage possibilities.
Well-acknowledged in economics literature: e.g. Piazzsesi (2001,2005)
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It is our goal to introduce a general framework which applies to
interest-rate modelling, credit risk and multiple yield-curve modelling.
The key step is to consider term-structures spanned by

P(t,T ) = exp
(
−
∫ T

t
f (t,u)µt (du)

)
, (2)

where µ is a finite optional random measure µ(ds,du) on [0,T∗]2, and

µt (du) := µ
(

[0, t],du
)
.

The processes f (.,T ),0≤ T ≤ T∗ satisfy

f (t,T ) = f (0,T ) +
∫ t

0
α(s,T )dAs +

∫ t

0
β (s,T ) ·dXs, (3)

A is of finite variation and X is a d-dimensional semimartingale.



Classical examples

Heath-Jarrow-Morton (1992)

consider the interest-rate case, i.e. CT = 1 and

P(t,T ) = e−
∫ T

t f (t,u)du.

This leads to arbitrage in the general case.
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Björk, Di Masi, Kabanov, Runggaldier (1997) show: if, additionally,
(i) X0 = e

∫ ·
0 f (s,s)ds is the numéraire, and

(ii) X is stochastically continuous with local characteristics (b,c,K )
then Q is a local martingale measure⇔

ᾱ(t,T ) = Ψt (−β̄ (t,T )),

for all 0≤ t ≤ T ≤ T∗, dP⊗dt-almost surely; where (recall µt (du) = du)

ᾱ(t,T ) =
∫

(t,T ]
α(t,u)µt (du)

β̄ (t,T ) =
∫

(t,T ]
β (t,u)µt (du)

Ψt (z) = 〈bt ,z〉+
1
2 〈z,ctz〉+

∫
(e〈z,x〉−1−〈z,x〉)Kt (dx).
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Credit risk

In credit risk, one considers CT = 1{τ>T} with a stopping time τ. The
HJM-approach reads

P(t,T ) = 1{τ>t}e−
∫ T

t f (t,u)du.

Again, this leads to arbitrage in the general case.

If the compensator of H = 1−C is of the form
∫ ·
0hsds, X0 = e

∫ ·
0 rsds is the

numéraire and X is stochastically continuous, then the considered measure
is a local martingale measure⇔

f (t, t) = rt + ht

ᾱ(t,T ) = Ψt (−β̄ (t,T )),

on {τ > t}, for all 0≤ t ≤ T ≤ T∗, dP⊗dt-almost surely.
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Towards general term structure models

Let us begin with the following observations: we may consider w.l.o.g.

f (t,T ) = f (0,T ) +
∫ t

0
β (s,T ) ·dXs, (4)

Lemma (Fontana & S. (2016))

Let τ be an F-stopping time and Ht = 1{τ≤t}. The default compensator Hp

admits the unique decomposition

Hp
t =

∫ t

0
hsds + λt + ∑

0<s≤t
∆Hp

s , for all 0≤ t ≤ T , (5)

where (ht )0≤t≤T is a non-negative predictable process such that∫ T
0 |hs|ds < +∞ a.s. and (λt )0≤t≤T is an increasing and continuous process

with λ0 = 0 such that dλs(ω)⊥ ds, for a.a. ω ∈Ω.

In the following we will throughout ignore (for simplicity) the singular
continuous parts (here: λ )
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We assume µ(ds,du) = 1{s<u}µ(ds,du), for all (s,u) ∈ [0,T∗]2.
Let µ̄ denote the predictable process

µ̄t := µ
(

[0,∞), [0, t]
)

= µ
(

[0, t), [0, t]
)
.

As µ̄ is increasing (and we drop the singular part)

µ̄t =
∫ t

0
m̄sds + ∑

s≤t
∆µ̄s.

We need techincal conditions on β to ensure existence of the integrals.
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We utilize the stochastic Fubini-theorem from Fontana & Schmidt (2016) to
obtain

∫
(t,T ]

f (t,u)µt (du) =
∫ t

0
β̄ (s,T )dXs +

∫ t

0

∫
(s,T ]

f (s,u)µ(ds,du)

−
∫ t

0
f (s,s)d µ̄s.

Comparison: in the classical HJM-case we have∫
(t,T ]

f (t,u)du =
∫ t

0
β̄ (s,T )dXs−

∫ t

0
f (s,s)ds.

As a consequence, we introduce the processes

Y (t,T ) :=
∫ t

0
β̄ (s,T )dXs +

∫ t

0

∫
(s,T ]

f (s,u)µ(ds,du)

and the associated random measure µ (Y (.,T ),H).
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For simplicity we consider X =
∫ ·
0asds + W . Define the function

W (s,y,z) := ef (s−,s)∆µ̄s
(
e−y −1−y

)
(1+ z). (6)

Recall
µ̄t =

∫ t

0
m̄sds + ∑

s≤t
∆µ̄s.

Theorem (Fontana & S. (2016))

The probability measure Q∗ ∼ P is an ELMM if and only if
1 f (t, t)m̄t = rt + ht , dQ⊗dt-a.s. for t ∈ [0,T∗];
2 f (t, t)∆µ̄t =− log(1−∆Hp

t ), for all t ∈ [0,T∗];
3 for all 0≤ t ≤ T ≤ T∗,

0 =Ψt (−β̄ (t,T ))− (
∫ t

0

∫
(s,T ]

f (s,u)µ(ds,du))ac
t + (W ?µ

p,(Y (.,T ),H))ac
t ,

where (·)ac denotes the absolutely continuous part.
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For example, if risky times are u1, . . . ,uN then

µt (du) = du +
N
∑
i=1

δui (du). (7)

Corollary

Assume that (7) holds. Then Q∗ is an ELMM if and only if

f (t, t) = rt + ht

f (ui ,ui ) =− log(1−∆Hp
ui ), i = 1, . . . ,N

0 = Ψt (−β̄ (t,T )),

0≤ t ≤ T ≤ T∗, dQ∗⊗dt-almost surely on {t < τ}.
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A general consideration of multiple yield curve models

Central instruments are forward rate agreements (FRA): the fixation of
a rate on the future interval [T ,S]. If bond prices are sufficiently liquid
(and not risky), one obtains the "classical" FRA rate

F (t,T ,S) = 1
S−T

(
P(t,T )
P(t,S) −1

)
. (8)

The argument is easy: we receive 1 at T and pay 1+ F (t,T ,S) · (S−T ) at
time S. The replicating strategy is to sell 1 T -bond (and get P(t,T ) in
cash) and invest this money in S-bonds (hence, we get P(t,T )/P(t,S)
S-bonds). The formula (8) follows.
If this is not the case one considers multiple yield curves.
The literature on multiple yield curve models is huge: short-rate type
models have been considered, e.g., in Kijima, Tanaka, and Wong (2009),
Kenyon (2010), as well as Filipović and Trolle (2013). On the other side,
Heath-Jarrow-Morton (HJM)-like approaches have been considered in
Crépey, Grbac, and Nguyen (2012), Crépey, Grbac, Ngor, and
Skovmand (2014), Moreni and Pallavicini (2014) as well as in Cuchiero,
Gnoatto and Fontana (2016).
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Central instruments: FRA

In a FRA, a discretely compounded rate is exchanged with payments
based on a fixed rate K . Denote its price by ΠFRA(t,T ,δ ,K ).
Denote the (spot) Libor rate (at T ) for [T ,T + δ ) by L(T ,T ,δ ).
The forward Libor rate L(t,T ,δ ) is the unique K , such that

ΠFRA(t,T ,δ ,K ) = 0. (9)

At maturity T ,

ΠFRA(T ,T ,δ ,K ) = (1+ δL(T ,T ,δ ))− (1+ δK ),

Discounting, we arrive at

ΠFRA(t,T ,δ ,K ) = (1+ δL(t,T ,δ ))P(t,T + δ )︸ ︷︷ ︸
=:St (δ )P(t,T ,δ )

−K̄ (δ )P(t,T + δ ), (10)
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Dynamic multiple term-structures

Consider (for simplicity) the continuous case, i.e. F is generated by a
Brownian motion W .
We assume that forward rates are given by

f (t,T ,δ ) = f (0,T ,δ ) +
∫ t

0
β (s,T ,δ )dXs.

where X is a continuous semimartingale and set for all 0≤ t ≤ T ≤ T∗
and δ ∈ {0,δ1, . . . ,δN}:

β̄ (t,T ,δ ) :=
∫

(t,T ]
β (t,u,δ )µ(du).

Here µ is a finite (deterministic) measure.
We consider an absolutely continuous numeraire

X0 = exp
(∫ ·

0
rsds

)
.
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We assume that the multiplicative spread process satisfies

St (δ ) = S0(δ )exp
(

At (δ )− 1
2

∫ t

0
‖bs(δ )‖2ds +

∫ t

0
bs(δ )dWs

)
,

where

At (δ ) =
∫ t

0
as(δ )ds + ∑

0<s≤t
∆As(δ ),

for all 0≤ t ≤ T∗.
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Theorem

The equivalent measure Q is an ELMM with respect to the numéraire X0 if
and only if:

1 rt = f (t, t,0), for a.e. 0≤ t ≤ T∗

2 for every T ∈ [0,T∗] and a.e. 0≤ t ≤ T the drift condition for the
risk-free curve,

0 = Ψt (−b̄(t,T ,0)) (11)

holds
3 {∆A(δ ) 6= 0} ⊆⋃N

n=1[[Tn]] and ∆ATn (δ ) = f (Tn,Tn,0)− f (Tn,Tn,δ ), for all
n = 1, . . . ,N

4 f (t, t,δ ) = f (t, t,0)−αt (δ ), for a.e. 0≤ t ≤ T∗

5 for every T ∈ [0,T∗] and a.e. 0≤ t ≤ T the drift condition for the tenor δ ,

0 = Ψt (−b̄(t,T ,δ ))− b̄(t,T ,δ )>βt (δ ), (12)

holds.

Metabief, Jan 2017 Thorsten Schmidt – On a general approach to dynamic term structures 16 / 19



Market Models

Starting from a slightly different fundamental representation we are able
to study market models in general:

ΠFRA(t,T ,T + δ ,K ) = δ
(
L(t,T ,δ )−K

)
P(t,T + δ ); (13)

here 0≤ t ≤ T ≤ T∗, δ ∈D and, in contrast to the HJM-approach, we
only consider maturities T ∈T = {T1, . . . ,TN}.
We assume that Libor rate satisfy

L(t,T ,δ ) = L(0,T ,δ ) +
∫ t

0
aL(s,T ,δ )ds + ∑

0<s≤t
∆L(s,T ,δ )

+
∫ t

0
bL(s,T ,δ )dWs, (14)
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Theorem

The measure Q is an ELMM if and only if the following conditions hold for all
T ∈T and δ ∈D :

1 ∆L(.,T ,T + δ ) = 0 Q-almost surely and
2 for dt⊗dQ-almost all t ≤ T

aL(t,T ,δ ) = b̄(t,T + δ ,0)>bL(t,T ,δ ). (15)

The drift condition suggests a change of measure and we indeed obtain the
following local-martingale condition. Define the density

ZT+δ
t := 1

X0
t

P(t,T + δ ,0)
P(0,T + δ ,0) , 0≤ t ≤ T + δ .

If this is a true martingale we define dQT+δ := ZT+δ

T+δ
dQ.

Proposition

Assume that for each (δ ,T ) ∈D×T the processes (ZT+δ
t )0≤t≤T+δ are true

martingales. Then Q is an ELMM if and only if for each (δ ,T ) ∈D×T , the
process (L(t,T ,δ ))0≤t≤T is a QT+δ -local martingale.



Many thanks for your attention !

Metabief, Jan 2017 Thorsten Schmidt – On a general approach to dynamic term structures 19 / 19


	Motivation
	Multiple yield-curve models
	Market models

