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Abstract. The recent financial crisis, responsible for massive accumulations of credit
events, emphasizes the urgent need for adequate portfolio default models. Due to the

high dimensionality of real credit portfolios, balancing flexibility and numerical tractabil-

ity is of uttermost importance. To acknowledge this, a multivariate default model with
interesting stylized properties is introduced in the following way: a non-decreasing shot-

noise process serves as common stochastic clock. Individual default times are defined as
the first-passage times of the common clock across independent exponentially distributed

threshold levels. We obtain a default model which has a dynamic stochastic represen-

tation, contagion effects, a positive probability for joint defaults, the ability to separate
univariate marginal laws from the dependence structure, and the option for efficient pric-

ing routines under a “large homogeneous groups” assumption. Besides this, the model is

well-suited for insurance portfolios which are subject to catastrophe risks and the pricing
of catastrophe derivatives.

Keywords: multivariate default model; shot-noise process; default dependence; copula; con-
tagion effect; tail dependence; catastrophe derivatives.

1. Introduction

The aim of the present investigation is the construction of a new multivariate model for
default events or the arrival times of insurance claims. We consider d components whose
random vector of extinction times is denoted by (τ1, . . . , τd) ∈ [0,∞)d. Real portfolios often
consist of hundreds of components, providing a truly high-dimensional problem. In this
regard, a main challenge is the adequate balance of numerical tractability and sufficient
flexibility concerning dependence structure and marginal laws. Combining recent academic
research and practical demands, we identified the following list of desirable properties:

(1) Positive lower tail dependence among the extinction times to account for the risk of
joint extremes, especially of joint early defaults.

(2) A singular component of the model-implied copula to allow for catastrophes in which
several components can simultaneously be destroyed.

(3) Contagion effects in the sense that a major adverse event increases the likelihood of
subsequent adverse events.

(4) The possibility to separate the marginal laws from the dependence structure. This
property is especially convenient for practical applications such as the calibration of
the model.

(5) A flexible spectrum of dependence patterns, interpolating in a parametric way from
independence to complete co-monotonicity.

(6) A dynamic representation of the model in the sense that the dependence structure is
generated by a stochastic process and not by a static random variable. This allows
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for changing random environments and the possibility to update the loss distribution
over time.1

(7) Sufficient structure to allow for the derivation of the portfolio loss distribution, which
in most applications is the quantity that is ultimately required.

(8) The possibility for efficient simulation schemes to apply the model in situations
where closed form solutions are not available.

Concerning the literature on portfolio default models, condition (1) is mostly2 satisfied, see,
e.g., [36, 18, 1]. Models satisfying (2) are often based on a Marshall–Olkin type dependence
structure, see, e.g., [17, 22, 24] and [29, 4] for extensions. Various kinds of contagion effects,
i.e. (3), have been proposed and are discussed, e.g., by [19, 29, 14, 11]. The copula behind
specific models, i.e. property (4), is computed in, e.g., [21, 35, 36, 24]. Examples of dynamic
models (6) are, e.g., [9, 24, 15]. Models satisfying (7) are mostly based on some sort of
conditionally independence structure in the spirit of [12], a reference for mixture models in
credit risk is [13].

Our proposal to meet the above requirements (1)–(8) is as follows: We start by defining
the default times by

τk := inf
{
t ≥ 0 : Sgk(t) ≥ Ek

}
, k = 1, . . . , d; (1)

here S is a non-decreasing shot-noise process independent of the i.i.d., exponential(1)-
distributed E1, . . . , Ed. Furthermore, g1, . . . , gd are deterministic and increasing functions
from [0,∞) to [0,∞).3 Defined in this way, choosing gk suitably allows to adjust the mar-
ginal laws of the default times to any given continuous distribution on [0,∞), corresponding
to property (4), see Lemma 3.4. Similarly to the model in [24], dependence is introduced by
the common factor S that can be interpreted as a stochastic time transformation, providing
a dynamic model, i.e. (6). In [24], this transformation relies on a Lévy subordinator. Such
processes have a convenient mathematical structure and the resulting model fulfills most
of the above-mentioned requirements, but their independent and stationary increments im-
ply precisely a model, respectively dependence structure,4 with multivariate lack-of-memory
property. In this regard, Lévy-frailty models do not support a contagion effect. To account
for this property we suitably alter the setting, replacing the Lévy subordinators by a non-
decreasing shot-noise process. Jumps of the shot-noise process correspond to major adverse
events and the reaction thereafter implies the desired contagion effect, so the stylized fact
(3) is met. This improvement of the model comes at the price of losing the convenient
Lévy-Khintchine formula. Still, it turns out that we have sufficient analytical structure to
derive many interesting quantities concerning the model-implied dependence structure. In
particular, we show that the model has a singular component, i.e. (2), and positive lower
tail dependence, i.e. (1). We investigate the contagion effect and the implied (implicit) cop-
ula. The latter turns out to be flexible enough to interpolate between independence and
comonotonicity in a multi-parametric way, i.e. (5) is met. The investigation of the model
is accompanied by simulations, requested in (8), that help to illustrate the model’s prop-
erties. Finally, we illustrate as an application how CDOs can be priced using the Laplace
transform of the shot-noise process, rendering the model tractable (7) for this application,

1Note that one can construct models that have the very same portfolio loss distribution for any fixed
t > 0, yet, the dynamic nature of the loss distribution is fundamentally different. One such example is

provided in [4].
2An exception is the Gaussian copula model by [38, 21] and its variants with the same dependence

structure.
3The model might be generalized by using multiple shot-noise processes as stochastic factors.
4A detailed investigation of the induced copula is presented in [25].
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and we draw the relation to insurance problems like the pricing of catastrophe bonds and
reinsurance contracts.

Summing up, our model aims at contributing to the existing literature by providing a
framework that combines as many interesting stylized facts as possible, while remaining
tractable for the usual applications in the field. To the best of our knowledge, a similar
model satisfying properties (1)–(8) has not been presented so far.

2. The model

In this section we introduce the model studied in this work. Most notably, the considered
vector of default times typically does not admit a default intensity and we start by giving the
appropriate definitions for conditionally independent defaults and reviewing related results
for credit derivatives. Consider a probability space (Ω,F ,Q) and a filtration F = (Ft)t≥0

satisfying the usual conditions. At the moment Q is an arbitrary probability measure, but
later on it will take the role of the risk-neutral measure. Our aim is to study a portfolio
of defaultable securities. To this end, we consider d different components (e.g. defaultable
companies or insurance claims). We associate with each component a default time τk,
k = 1, . . . , d, which is simply an F-stopping time.

We define the default times along the lines of the so-called canonical construction of
conditionally independent default times (see Section 9.1.2 in [5]). Consider a Poisson process
N with intensity l > 0 and denote by T1, T2, . . . its jump times. Let V1, V2, . . . be i.i.d. and
independent of N . Then (

∑
Tn≤t Vn)t≥0 is a compound Poisson process. Finally, consider a

constant µ ∈ R, a measurable function h : R+ → R, called responce function, and define the
process S by

St := µt+
∑
Tn≤t

Vnh(t− Tn). (2)

Then S is a shot-noise process with drift µ. If µ = 0, S is a classical shot-noise process (see
[28] or [33] for a detailed analysis).

To serve as a time-transformation, we need S to be pathwise non-decreasing. Hence, we
assume that µ ≥ 0, Q(V1 > 0) = 1, and that h is non-negative and increasing. Then S
is a non-negative, non-decreasing process. Moreover, let gk : R+ → R+, k = 1, . . . , d, be
strictly increasing functions such that gk(0) = 0 and limt→∞ gk(t) =∞. Let E1, . . . , Ed be
independent, exponential(1)-distributed random variables which are also independent of S.
Then we define the default times by

τk := inf
{
t ≥ 0 : Sgk(t) ≥ Ek

}
, k = 1, . . . , d. (3)

Note that the processes Sk, given by St,k := Sgk(t), are path-wise non-decreasing, as S
and gk are. Here, gk allows to adjust the marginal distributions Q(τk ≤ t) to any given
continuous distribution functions on [0,∞), which is an important property of portfolio
default models, the so-called separation property. We analyse this in detail in Section 3.2. If
g1 = · · · = gd, then all default times have the same marginal distribution and the components
are conditionally i.i.d. given the σ-algebra generated by S. In general, the default times are
only conditionally independent and we provide some further results in this direction.

Example 2.1 (Parametric families). For a concrete application of the model it is very im-
portant to have a repertory of parametric families of the response function h. Below, we
provide some specifications which lead to analytically tractable models. To ensure compara-
bility of the approaches we require limt→∞ h(t) = 1, i.e. each jump Vn is ultimately absorbed
into S.
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Figure 1. Illustration of one realization of the model with exponential
structure (d = 125, t ∈ [0, 10] years). One observes that whenever S jumps,
accumulations of defaults are possible. Moreover, after such an event, an
increasing default activity is to observe.

(1) Compound Poisson: the choice h(t) ≡ 1 corresponds precisely to the case of a
compound Poisson process (with drift, if µ > 0).

(2) Linear structure: for α ∈ [0, 1] , β > 0, let

h(t) := α+ (1− α)
t

β
1{t≤β} + (1− α)1{t>β}.

This response function starts at h(0) = α and increases linearly over the interval
[0, β] until it reaches h(β) = 1.

(3) Exponential structure: for α ∈ [0, 1] , β > 0, let

h(t) := α+ (1− α)
(
1− e−βt

)
.

Here, h starts at h(0) = α and increases exponentially with limit h(∞) = 1. The
parameter α controls the impact of the jump size on S. The parameter β controls
the speed of the growth. The limit for β →∞ is h(t) ≡ 1.

(4) Rational structure: for α ∈ [0, 1] , β > 0, let

h(t) := α+ (1− α)
t

t+ β
.

This provides an alternative specification to the exponential structure. The limit
for β → 0 is h(t) ≡ 1.

For the description of the statistical properties of the model, the Laplace transform of
the shot-noise process is a central quantity.
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Proposition 2.1. Define ϕ(θ) := E
(

exp(−θV1)
)
, for θ ≥ 0. Then,

E
(
e−θSt

)
= exp

(
−θµt− l

∫ t

0

(
1− ϕ(θh(s)

))
ds

)
, (4)

for any t ≥ 0 and θ ≥ 0 such that the integral exists. Moreover, one can generalize this
classical result to the case of a response-funtion depending on t, i.e.

E
(
e−θ

∑
Tn≤t Vnh(t,t−Tn)

)
= exp

(
−lt+ l

∫ t

0

ϕ
(
θh(t, t− s)

)
ds

)
. (5)

Existence of the expectations (4) and (5) in our setup is guaranteed for all t ≥ 0 and
θ ≥ 0 as S is non-negative. For the reader’s convenience, we give a proof of this classical
result and its generalization.

Proof. The fact that N has stationary and independent increments together with the lack-
of-memory property of the interarrival times gives the well-known fact, that conditional on
{Nt = k}

(T1, . . . , Tk)
L
= (tU1:k, . . . , tUk:k);

here U1, . . . , Uk are i.i.d. random variables which have a uniform distribution on [0, 1] and
are independent of {Nt = k}, see [31, p. 502]. By U1:k ≤ · · · ≤ Uk:k we denote their order
statistics. Hence,

(5) =
∑
k≥0

e−lt
(lt)k

k!
E
(
e−θ

∑k
n=1 Vnh(t,t−Tn)

∣∣Nt = k
)

=
∑
k≥0

e−lt
(lt)k

k!
E
(
e−θ

∑k
n=1 Vnh(t,t−tUn:k)

)
=
∑
k≥0

e−lt
(lt)k

k!
E
(
e−θ

∑k
n=1 Vnh(t,t−tUn)

)
=: e−lt+ltΠ

where

Π = E
(
e−θV1h(t,t−tU1)

)
=

1

t

∫ t

0

ϕ
(
θh(t, t− s)

)
ds.

Hence, we obtain (5) and considering h(t, u) = h(u) we obtain (4). �

Example 2.2 (Parametric families of the jump distribution).

(1) In the case h(t) ≡ 1, S becomes a compound Poisson process with drift. The
exponent of its Laplace transform is −θµt + lt(ϕ(θ) − 1). Note that this is the
limiting case obtained for α ↗ 1 in the linear, exponential, and rational structures
introduced above.

(2) For the exponential structure, consider jumps with an Erlang-distribution, denoted
Γ(n, ν). This is a flexible class of positive random variables which contains the
exponential and the χ2

n-distribution as special cases. Let V1 ∼ Γ(n, ν) with n ∈ N
and ν > 0. Then

ϕ (θ) = E(e−θV1) =

(
ν

ν + θ

)n
, θ > −ν.
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The tractability of the Erlang-distribution mainly attributes to the following result:∫
an

x(a+ bx)n
dx = ln

( x

a+ bx

)
+

n−1∑
i=1

ai

i(a+ bx)i
(6)

see Lemma A.1. A small calculation using (6) shows that lnE [exp(−θSt)] equals

− (µθ + l)t+
l

β

(
ν

ν + θ

)n [
βt− ln

(
ν + αθ

ν + θ + θ(α− 1)e−βt

)
+

n−1∑
i=1

(ν + θ)i

i

(
1

(ν + θα)i
− 1

(ν + θ + θ(α− 1)e−βt)i

)]
; (7)

the proof is provided in Lemma A.2. For n = 1 we obtain an exponential distribution
with parameter ν > 0 and the obvious simplification of Equation (7).

(3) Having a response function with rational structure and exponential(ν)-distributed
jumps yields that lnE(exp(−θSt)) equals

−µθt+ l

(
βνθ(1− α)

(ν + θ)2
ln
(

1 +
(ν + θ)t

β(ν + αθ)

)
− θt

ν + θ

)
(8)

for θ ≥ 0. We provide a proof in the Appendix in Lemma A.3.

One can, of course, replace the distributions we chose in the examples with more general
ones, like stable distributions or generalized gamma distributions. In this case one will
typically need a one-dimensional numerical integration to provide the Laplace transform of
S.

2.1. Conditionally independent defaults. If G ⊂ F is an arbitrary σ-algebra then we
call τ1, . . . , τd conditionally independent w.r.t. G if

Q(τ1 > t1, . . . , τd > td|G) =

d∏
k=1

Q(τk > tk|G).

It is easy to see that this applies in our setup with G = σ(St : t ≥ 0), and we have

Q(τk > tk|G) = e−Sgk(tk) .

We study the unconditional probability Q(τk > t) in more detail in Proposition 3.2 and

the following remark. If Sk is absolutely continuous, i.e. St,k =
∫ t

0
λu,kdu for some positive

process λk, then λk is called default intensity of component k. Such models are called
reduced-form models and we refer to [10] and [5] for further details. The following immediate
result shows how such models appear in our setup.

Lemma 2.2. Consider k ∈ {1, . . . , d} and gk(t) = t. If h is absolutely continuous, then

λt,k = µ+
∑
Tn≤t

Vnh
′(t− Tn),

such that λk is again a shot-noise process, starting from µ.

If h′(t) is of the form a exp(−bt) for some constants a and b, this leads to the well-known
class of affine processes as shown in [16]. The lemma extends in an obvious way to the case
when gk is absolutely continuous.
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2.2. Simulation. In this section we provide an efficient algorithm for simulating the model
and we show some simulation results. The main advantage of the algorithm is its efficiency
in high dimensions. This results from the fact that we have a conditionally i.i.d. structure,
meaning that once the shot-noise process is simulated, the effort increases (almost) linearly
in the dimension. This is a quite convenient situation. The algorithm works as follows:
We fix a time horizon T > 0 and use the fact that conditional on the number of jumps
of a Poisson process its jump times are equal in distribution to the order statistics of i.i.d.
uniform random variables on [0, T ], see [32, p. 17].

Algorithm 2.1 (Simulating dependent default times). Simulation of one path of a shot-
noise process S on [0, T ] and the corresponding vector of default times (τ1, . . . , τd).

(1) Draw the number of jumps on [0, T ], abbreviated N , from a Poisson(lT )-distribution.
(2) Simulate N i.i.d. U [0, T ] random variables U1, . . . , UN and set Ti := Ui:N , i =

1, . . . , N , where Ui:N is the ith order statistic.
(3) SimulateN i.i.d. random variables V1, . . . , VN (jump heights) according to the chosen

jump size distribution.

(4) Compute the path St = µt+
∑N
i=1 Vih(t− Ti), t ∈ [0, T ].

(5) Simulate the default thresholds as i.i.d. exponential(1)-random variables E1, . . . , Ed
and determine τ1, . . . , τd according to Equation (3). In case not all default times are
triggered, increase T .

An illustration is given in Figure 1. It clearly shows clustering of defaults around the
jumps of S. After each jump, the probability for additional defaults decreases as time goes
on. The bivariate copula behind the model is illustrated in Figure 2 by means of scatterplots
for various parameter constellations.

3. Joint distribution of defaults and further properties

In this section we further elaborate on the distributional properties of the model and we
derive general results on the pricing of derivatives. We then compute the joint distribution
of the default times. Thereafter we study the separation property and deduce the coefficients
of tail dependence.

3.1. Pricing. For the valuation of derivatives, assume that Q is the risk-neutral measure
used for pricing. Denote by (rt)t≥0 the default free short rate. We assume that r is bounded
from below. Single-name credit derivatives can be valued with the following result. Denote
Ht := σ(1{τk≤s} : 0 ≤ s ≤ t, k = 1, . . . , d) the information about the default times. Market
factors like r and S are assumed to be G-measurable

Proposition 3.1. Suppose that Y is a G-measurable random variable. Then

E
(
e−

∫ T
t
ruduY 1{τk>T} | G ∨ Ht

)
= 1{τk>t}e

−
∫ T
t
rudue−(ST,k−St,k)Y.

Proof. See [5, p. 146]. �

More generally, for portfolio products the following result gives the joint survival function.
For fixed dimension d, we use the abbreviation

Hk(s) = Hk(sk, . . . , sd, s) =

d∑
j=k

h(sj − s), (9)

such that for d = 2 we have H1(s) = h(s1 − s) + h(s2 − s) and H2(s) = h(s2 − s).
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Proposition 3.2. The conditional survival probability of the default times equals

Q
(
τ1 > t1, . . . , τd > td | G ∨ Ht

)
= 1{τ1>t,...,τd>t}

d∏
k=1

e−(Stk,k−St,k).

Moreover, set s̃k := gk(tk) and denote by s1 ≤ · · · ≤ sd their ordered list, and s0 := 0. Then

Q
(
τ1 > t1, . . . , τd > td

)
= exp

(
− µ

d∑
k=1

sk − lsd + l

d∑
k=1

∫ sk

sk−1

ϕ(Hk(s)) ds

)

with Hk as defined in (9).

Proof. The first result follows from Proposition 3.1 using conditional independence. For the
computation of the unconditional joint survival probability, observe that taking t = 0 leads
to

Q (τ1 > t1, . . . , τd > td) = E
(
e−

∑d
k=1 Sgk(tk)

)
= E

(
e−

∑d
k=1 Ssk

)
,

where s1 ≤ · · · ≤ sd. Consider the case µ = 0 and d = 2. Then

E(e−Ss1−Ss2 )

= E
(

exp
(
−
Ns1∑
n=1

Vn(h(s1 − Tn) + h(s2 − Tn))−
Ns2∑

n=Ns1+1

Vnh(s2 − Tn)
))

= E
(

exp
(
−
Ns1∑
n=1

Vn(h(s1 − Tn) + h(s2 − Tn))
)
· E
(

exp
(
−

Ns2∑
n=Ns1+1

Vnh(s2 − Tn)
)∣∣∣Fs1)).

(10)

Regarding the conditional expectation, we use the fact that the increments of (
∑Nt
i=1 Vn)

over (0, s1] and (s1, s2] are independent and stationary and obtain that

E
(

exp
(
−

Ns2∑
n=Ns1+1

Vnh(s2 − Tn)
)∣∣∣Fs1) = E

(
exp

(
−
Ns2−s1∑
n=1

Vnh(s2 − s1 − Tn)
))

= exp

(
−l(s2 − s1) +

∫ s2−s1

0

ϕ(h(s2 − s1 − s))ds
)

= exp

(
−l(s2 − s1) +

∫ s2

s1

ϕ(h(s2 − s))ds
)

= exp

(
−l(s2 − s1) +

∫ s2

s1

ϕ(H2(s))ds

)
.

Regarding the remaining term in (10), we apply Equation (5) from Proposition 2.1 with the

function h̃(t, u) = h(s2, t, u) := h(u) + h(s2 − t+ u). Note that

h̃(s1, s1 − Tn) = h(s1 − Tn) + h(s2 − Tn)
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which is exactly the term appearing in (10). Thus, (5) gives

E
(

exp
(
−
Ns1∑
n=1

Vnh̃(s1, s1 − Tn)
))

= exp

(
−ls1 + l

∫ s1

0

ϕ
(
h̃(s1, s1 − s)

)
ds

)
= exp

(
−ls1 + l

∫ s1

0

ϕ
(
h(s1 − s) + h(s2 − s)

)
ds

)
= exp

(
−ls1 + l

∫ s1

0

ϕ
(
H1(s)

)
ds

)
.

For the case µ > 0 we have to multiply this expression by exp(−µ(s1 + s2)) and obtain the
result by induction. �

Remark 3.1. In particular, the above proposition yields

Q
(
τk > t

)
= exp

(
− µgk(t)− l

∫ gk(t)

0

(
1− ϕ(h(s))

)
ds

)
= E(e−Sgk(t)),

compare also Proposition 2.1. Therefore, two default times τi and τj have the same distri-
bution if and only if gi = gj .

In the exponential structure we are able to exploit the multiplicative structure of h,
i.e. exp(−β(t+ s)) = exp(−βt) exp(−βs). A similar calculation is possible in the linear
structure as well. Regarding models with exponential or rational structure, we study Ex-
ample 2.2(2) in more detail. In this case the model has an exponential structure where the
jumps have an Erlang-distribution. The following corollary summarizes the results in this
case.

Corollary 3.3. Assume that h(t) = a + b exp(−βt) with β > 0, a + b > 0 and that V1 ∼
Γ(n, ν) with n ∈ N and ν > 0. Consider t1, . . . , td ≥ 0 and denote by s1 ≤ · · · ≤ sd the

ordered list of g1(t1), . . . , gd(td). Let ak := ν + a(d− k + 1), bk := b
∑k
i=1 exp(−βsi) and

Fk(t) :=
1

(ak)n

(
ln
( t

ak + bkt

)
+

n−1∑
i=1

1

i

( ak
ak + bkt

)i)
,

k = 1, . . . , d. Then

Q (τ1 > t1, . . . , τd > td) = exp

(
− µ

d∑
k=1

sk − lsd +
lνn

β

d∑
k=1

(
Fk(eβsk)− Fk(eβsk−1)

))
.

To apply this result to Example 2.2(2), set a = α and b = 1−α with α ∈ [0, 1]. In the case
where we have a rational structure as in Example 2.2(3), the integration can be traced back
to finding the roots of a polynomial which can be solved efficiently by numerical methods.

Proof. Note that

Hk(s) = a(d− k + 1) + eβsb

k∑
i=1

e−βsi = ak − ν + eβsbk
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where the function Hk is defined in (9). As the jump sizes have an Erlang-distribution, we
have that ϕ(θ) = νn(ν + θ)−n, such that∫ sk

sk−1

ϕ(Hk(s))ds =

∫ sk

sk−1

νn

(ak + bkeβs)n
ds

=
νn

β(ak)n

∫ eβsk

eβsk−1

(ak)n

x(ak + bkx)n
dx

=
νn

β

(
Fk(eβsk)− Fk(eβsk−1)

)
by (6). Applying Proposition 3.2, we conclude. �

3.2. Separation of dependence structure from marginal laws. When setting up a
multivariate model, it is extremely convenient if the marginal laws can be separated from the
dependence structure. On a theoretical level, this reflects the decomposition of a distribution
into the univariate marginal laws and the copula, see [34]. For practical applications, it is
very common to start with given univariate marginals and to combine them in a suitable
way. Such a separation is especially convenient for the calibration of the model, which can
then be done in two separate steps: first, the calibration of the univariate marginal laws,
followed by the calibration of the dependence structure in a second step.

In this paragraph we analyse this property in our model, generalizing [26] to the case
of inhomogeneous portfolios. We consider fixed marginal distributions pk : [0,∞) → [0, 1),
k = 1, . . . , d, and assume that p1, . . . , pd are continuous.

Definition 3.1. We say that the separation condition holds, if there exist (a) a stochastic
process F which is a distribution function on [0,∞) for each fix ω ∈ Ω, (b) a vector of i.i.d.
U [0, 1]-distributed random variables U1, . . . , Ud, independent of F , (c) deterministic and
strictly increasing functions g1, . . . , gd, and (d) pre-specified distribution functions p1, . . . , pd
on [0,∞), such that for k = 1, . . . , d one has

(i) τk = inf{t ≥ 0 : Fgk(t) ≥ Uk},
(ii) Q(τk ≤ t) = pk(t), for all t ≥ 0.

Note that (i) can equivalently be written using i.i.d. exponential(1) triggers E1, . . . , Ed
and τk = inf{t ≥ 0 : − ln(1 − Fgk(t)) ≥ Ek}. If the separation condition holds, the default
times are conditionally independent. Moreover, any appropriate marginal distribution pk
can be matched and the dependence can be specified in a separate step by choosing the
stochastic process F . In our setup, we have Fgk(t) = 1 − exp(−Sgk(t)). Condition (ii) is
equivalent to

Q(τk ≤ t) = Q(Fgk(t) ≥ Uk) = E(Fgk(t)), t ≥ 0. (11)

Lemma 3.4 shows how a given marginal distribution is matched. Therefore, the separation
condition holds.

Lemma 3.4 (Given univariate marginal laws). Let p : [0,∞)→ [0, 1) be a non-decreasing,
continuous function such that p(t) > 0 for all t > 0. Define I(t) := E

(
exp(−St)

)
and assume

that limt→∞ I(t) = 0.5 Then Q(τk ≤ t) = p(t) for all t ≥ 0 is in our model equivalent to

gk(t) = I−1
(
1− p(t)

)
, ∀t ≥ 0. (12)

Moreover, t 7→ gk(t) defined as in (12) is increasing and the condition limt→∞ p(t) = 1
implies limt→∞ gk(t) =∞.

5This holds for all commonly used jump size distributions and non-degenerate h.
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Proof. Recall that we assumed µ ≥ 0, Q(V1 > 0) = 1, and h being non-negative and
increasing, which ensured that S is a non-decreasing processes. Hence E

(
exp(−St)

)
is non-

increasing in t. We prove that it is even strictly decreasing. By Proposition 2.1 we have
that

I(t) = exp

(
−µt− l

∫ t

0

(
1− ϕ(h(s))

)
ds

)
.

Q(V1 > 0) implies that 1 − ϕ(h(s)) = 1 − E(exp(−h(s)V1)) > 0 for s > 0. Together with
our assumptions l > 0 and µ ≥ 0 we obtain that I is strictly decreasing. Moreover, we also
assumed that I(t)→ 0 with t→∞. Hence, as noted in (11) we have that

p(t) = Q(τk ≤ t) = 1− E(e−Sgk(t)) = 1− I(gk(t)),

which is then equivalent to gk(t) = I−1(1 − p(t)). Finally, we observe that I−1(ε) → ∞ as
ε→ 0 and we conclude. �

Example 3.1. For the case h(t) ≡ 1, g(t) can easily be calculated. Note that the function
I(t) is precisely the Laplace transform of (St)t≥0 at 1, which we computed in Proposition
2.1 and is well known for the compound Poisson case. Hence, we have

ln
(
I(t)

)
= −µt− ltE

(
1− e−V

)
= −µt− lt

(
1− ϕ(1)

)
, t ≥ 0.

Inverting this expression yields

g(t) = I−1
(
1− p(t)

)
=

ln (1− p(t))
−µ− l

(
1− ϕ(1)

) =
− ln (1− p(t))
µ+ l

(
1− ϕ(1)

) .
For more involved specifications of the response function, the inverse of I(t) can not easily

be calculated analytically. Numerically, however, for given t 7→ p(t), it is easy to solve

I
(
g(t)

)
− 1 + p(t) = 0

for g(t), using, for example, the bisection method.

3.3. Tail dependence. An important measure for joint extremes are the coefficients of
upper and lower tail dependence. In the present context, especially a positive lower tail
dependence coefficient among the default times is important to adequately consider the risk
of joint early defaults.

We assume a homogeneous structure concerning the univariate marginal laws, i.e. gk(t) ≡
g(t) for k = 1, . . . , d. The results in this section can, however, be extended to inhomogeneous
marginals but become notationally cumbersome. The results on tail dependence coefficients
for CIID models from [26] show that the coefficient of lower tail dependence λl of a pair of
default times (τi, τj) is related to the market frailty Fg(t) via

λl = lim
t↓0

Q(τi ≤ t |τj ≤ t ) = lim
t↓0

Q(τi ≤ t, τj ≤ t)
Q(τj ≤ t)

= lim
t↓0

E((Fg(t))
2)

E(Fg(t))
. (13)

In our framework we are able to derive an explicit expression for the lower tail dependence
coefficient. Interestingly, this is related to the behavior of h at zero and the expected size
of the jumps as well as the ratio of the drift µ over the jump intensity l.

Proposition 3.5 (Lower tail dependence). Assume that h is continuous at zero and g
strictly increasing around zero.

(i) If h(0) > 0 or µ > 0 then the coefficient of lower tail dependence λl is

λl =
1 + ϕ(2h(0))− 2ϕ(h(0))

µ/l + 1− ϕ(h(0))
> 0.



12 MATTHIAS SCHERER, LUDWIG SCHMID, AND THORSTEN SCHMIDT

(ii) If h(0) = 0 and µ = 0 and moreover h is strictly increasing around zero then

λl = 2− 2 lim
t↓0

ϕ′(2t)

ϕ′(t)
, (14)

provided existence of this limit.

Both cases have a very appealing interpretation: in the first case, where h(0) > 0 or
µ > 0, we necessarily have positive tail dependence.6 The special case h(0) = 1, µ = 0
corresponds to a Lévy-frailty model where the frailty process is of compound Poisson type.
In this case, the lower tail dependence coefficient can be expressed via the Laplace exponent
Ψ of the compound Poisson process and is given by λl = 2 − Ψ(2)/Ψ(1), see [25]. The
connection to the present case is established by Ψ(x) = l

(
1− ϕ(x)

)
.

In the second case, where h(0) = 0 and µ = 0, the jumps Vn are continuously absorbed
into S over time, but we still can have positive lower tail dependence. Interestingly, this
is closely related to the upper tail dependence coefficient of an Archimedean copula with
generator ϕ, which is given by precisely the same limit as we have in (14). Knowing this, we
can immediately conclude that if E(V ) < ∞, the limit equals zero, which follows from our
formula as then limt↓0 ϕ

′(t) = limt↓0 ϕ
′(2t) = −E(V ). Interpreted differently, if the jumps

have finite expectation and µ = 0, the slope of h is not strong enough to produce lower
tail dependence. Moreover, the limit in (14) is known for all distributions of V that are
commonly used as a mixture variable for extendible Archimedean copulas, respectively their
associated generators ϕ, see e.g. [6].

Proof. The strict monotonicity of g around zero gives that

lim
t↓0

E((Fg(t))
2)

E(Fg(t))
= lim

t↓0

E((Ft)
2)

E(Ft)

by substitution. Proposition 2.1 allows us to compute

E(Ft) = E(1− exp(−Sg(t))) = 1− exp
(
− µt− l

∫ t

0

(
1− ϕ

(
h(s)

))
ds
)
,

E((Ft)
2) = E

(
1 + e−2Sg(t) − 2e−Sg(t)

)
= 1 + exp

(
− 2µt− l

∫ t

0

(
1− ϕ

(
2h(s)

))
ds
)
− 2 exp

(
− µt− l

∫ t

0

(
1− ϕ

(
h(s)

))
ds
)
.

With l’Hospital’s rule we obtain that

λl = lim
t↓0

−2µ− l(1− ϕ(2h(t)))− 2
(
− µ− l(1− ϕ(h(t)))

)
µ+ l(1− ϕ(h(t)))

.

If we have that h(0) > 0 or µ > 0 we can directly compute the limit and obtain that

λl =
l − 2lϕ(h(0)) + lϕ(2(h(0))

µ+ l − lϕ(h(0))
.

Strict convexity of the Laplace transform ϕ now yields that λl > 0.
In the case where h(0) = 0 and µ = 0 we apply l’Hospital’s rule again and strict mono-

tonicity of h around zero gives

λl = 2− 2 lim
t↓0

ϕ′(2t)

ϕ′(t)

if the limit exists and we conclude. �

6This is due to ϕ being the Laplace transform of the positive random variable V and, hence, being

completely monotone by Bernstein’s theorem, see [3].
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3.4. Singular component. An interesting property of the model is the flexibility to inter-
polate between absolutely continuous distributions and distributions with a singular com-
ponent. The latter is the result of jumps in S, respectively F , which implies Q

(
p1(τ1) =

p2(τ2) = . . . = pk(τk)
)
> 0, k = 2, . . . , d, where pi is the marginal law of τi. This is caused

by the positive probability of multiple triggers to be activated jointly via a jump of S, re-
spectively F . On the contrary, whenever S, respectively F , is continuous, the probability of
multiple triggers to be jointly activated is zero, as Q(U1 = . . . = Uk) = 0. This flexibility is
illustrated in Figure 2 by means of scatterplots of the model-implied survival copula. The
latter is obtained by transforming the marginals to U [0, 1]. Figure 3 illustrates the flexibility
of the model to interpolate between independence and comonotonicity.

4. Applications to credit portfolios

To enhance tractability for large portfolios, one may consider the following approximation
via homogeneous groups. To this end, we assume that the portfolio can be divided into
M groups such that the default times are conditionally independent and in each group
conditionally i.i.d..

More precisely, consider i.i.d. (Eij)i,j∈N, exponential(1)-distributed and independent of
the shot-noise process S. For 1 ≤ m ≤M denote the number of entities in group m by nm,
and set n := (n1, . . . , nM )> ∈ NM . In a homogeneous group approach, we assume that

τkm = inf{t ≥ 0 : Sgm(t) ≥ Ekm}.

For the approximation of the fraction of defaulted companies up to time t we consider a
sequence (nk) of elements of NM such that the number of entities in each group converges
to infinity and the fraction of entities in each group converges to a constant.

(A1) Assume that (nk)k∈N ⊂ NM is a sequence such that min(nk1 , . . . , n
k
M ) → ∞ as

k →∞ and that there exists α ∈ RM with (nk1 + · · ·+ nkM )−1nk → α, as k →∞.

It is immediate that α lies in the unit simplex, i.e. αm ∈ [0, 1] and α1 + · · ·+ αM = 1. We
define the average number of defaulted companies until time t by

Lk(t) :=
1

nk1 + · · ·+ nkM

M∑
m=1

nkm∑
i=1

1{τim≤t},

and denote

L(t) :=

M∑
m=1

αm(1− e−Sgm(t)).

An application of the Glivenko–Cantelli theorem, see, e.g., [20], gives the following result on
uniform convergence of Lk to L. It is a generalization of Lemma 2.2 in [26] to the case of
inhomogeneous groups.

Proposition 4.1. Assume that (A1) holds. Then

lim
k→∞

sup
t≥0
| Lk(t)− L(t) |= 0

Q-almost surely.

Proof. To prove the claim we condition on the path of S and then follow the steps from the
classical Glivenko–Cantelli theorem, taking additional care on the non-identical distribution
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Figure 2. The bivariate model-implied survival copula is illustrated by
means of scatterplots (left) for different parameters (α, β); exemplarily for
the exponential structure, i.e. Example 2.1(3). Moreover, two sample paths
illustrate the respective shot-noise process S for each parameter constella-
tion (middle). Finally, the (empirical) measures of dependence Kandall’s
tau and Spearman’s rho (right) illustrate the level of implied dependence
and demonstrate the flexibility of the ansatz. Most notably, the model in-
terpolates between an absolutely continuous copula (for α = 0, where the
process S is continuous) and a Cuadras–Augé copula (for α = 1, where the
process S is a compound Poisson process).
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Figure 3. Scatterplots from the bivariate implied survival copula of the
model from Example 2.1(3). Jumps are exponentially distributed with pa-
rameter ν, the other parameters are α = 0.5, β = 2, and l = 0.5. With
decreasing ν, the expected size of jumps increases such that more joint de-
faults occur, i.e. more samples fall on the diagonal. The limit ν ↗∞ implies
independence, whereas ν ↘ 0 implies comonotonicity. This illustrates the
range of possible implied dependence structures within this model specifi-
cation.

over the groups. Observe that {τkm ≤ t} = {Sgm(t) ≥ Ekm}. Moreover, by the independence
of S and the exponentially distributed random variables we obtain that

sup
t≥0
| Lk(t)− L(t) | = sup

t≥0

∣∣∣ 1

nk1 + · · ·+ nkM

M∑
m=1

nkm∑
k=1

1{Sgm(t)≥Ekm} −
M∑
m=1

αm(1− e−Sgm(t))
∣∣∣

≤ sup
t≥0

∣∣∣ 1

nk1 + · · ·+ nkM

M∑
m=1

nkm∑
k=1

1{t≥Ekm} −
M∑
m=1

αm(1− e−t)
∣∣∣

with equality if Sgm(t), m = 1, . . . ,M are continuous and have image R+.
Observe that

1

nk1 + · · ·+ nkM

M∑
m=1

nkm∑
k=1

1{t≥Ekm} =

M∑
m=1

αm
nm

αm(nk1 + · · ·+ nkM )

1

nkm

nkm∑
k=1

1{t≥Ekm}.

The strong law of large numbers yields that (nkm)−1
∑nm
k=1 1{t≥Ekm} → (1 − e−t) as k →

∞. Moreover, (A1) guarantees that nm
αm(nk1+···+nkM )

→ 1 as k → ∞. This gives pointwise
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convergence for each t. Together with the continuity of the exponential distribution we
obtain uniform convergence, see [20, Proposition 3.24], and the claim follows. �

4.1. Valuation of CDOs. Synthetic CDOs are swap-like credit derivatives that allow to
exchange potential losses within a certain loss interval (called tranche) of some credit port-
folio against periodic premium / insurance payments. The pricing problem related to CDO
tranches requires one to determine the “fair spread” / “fair premium rate” for each tranche.
Computed with this spread, the expected discounted default leg (present value of the losses)
agrees with the expected discounted premium leg of the respective tranche (present value
of the premium payments). As part of the contractual specifications, one agrees upon the
premium frequency (usually quarter-yearly), the contracts notional, the upper- and lower
attachment points of the tranche (in percent of the CDOs overall notional), the handling of
accrued interest, and the maturity of the contract. Being more specific concerning contrac-
tual specifications is not relevant for the following considerations.

Given the assumptions of a homogeneous and deterministic loss given default across the
portfolio and discount factors being independent of default times, all expected discounted
payment streams can be expressed as expectations of functions of the number of defaults up
to time t. To this aim, we have to compute

E
(
f(Lk(t))

)
, t ≥ 0, (15)

where the non-linear function f depends on the tranches attachment points and the loss
given default. The advantage of the present situation is that Proposition 4.1 provides us
with a very convenient approximation of the loss distribution. Hence, we could specify the
model such that the density of St is known and obtain (via density transformation) the
density of the approximated portfolio loss distribution. The required expectation (15) could
then conveniently be computed as a single integral. This observation constitutes the main
advantage of conditionally independence models and clearly justifies their popularity.

Alternatively, we can take advantage of the fact that the Laplace transform of the shot-
noise process can be calculated explicitly. Therefore, we can employ Laplace inversion
techniques from option pricing, even if the density of the portfolio loss is not known. A
common assumption in the CDO literature is a large homogeneous portfolio assumption
which we consider here for simplicity, i.e., we let M = 1.

More precisely, given the number of defaults up to time t, the pricing of a CDO tranche,
say j, requires to compute the expected loss affecting it, E(Lkj (t)), with

Lkj (t) = min
(

max
(
0, (1−R)Lk(t)− lj

)
, uj − lj

)
, t ≥ 0, (16)

where lj and uj denote the lower and upper attachment points of the tranche, respectively,
and the recovery rate R as assumed above. Under the approximation of Proposition 4.1
together with M = 1, E(Lkj (t)) can be rewriten as

E(Lkj (t)) ≈ E
(
uj − lj +

(
lj − (1−R)L(t)

)+ − (uj − (1−R)L(t)
)+)

= uj − lj + (1−R)E

((
e−Sg(t) −

(
1− lj

1−R

))+

−
(
e−Sg(t) −

(
1− uj

1−R

))+
)
.

The expectation now essentially equals the difference of two call options with strikes 1 −
lj/(1−R) and 1 − uj/(1−R) on the asset exp(−Sg(t)). This observation, together with
the fact that the Laplace transform of the model is known, allows for efficient CDO pricing
schemes without approximating the density of the portfolio loss distribution. Following the
approach of Raible [30], inverse Laplace transforms allow to compute the prices of those
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options, where the inversion integrals can be approximated numerically to a high precision
by applying an algorithm suggested by Talbot [37].

Example 4.1. We investigate CDO spreads computed with our model in a small case study.
This allows us to understand how the parameters influence the model-implied dependence
structure as well as CDO tranche spreads. Moreover, it demonstrates the viability of our
ansatz. Each valuation, implemented with inverse Laplace techniques on a standard PC,
requires only a fraction of a second. The (homogeneous) marginal laws are taken to be
exponential with rate 0.5% in all cases, corresponding to a five year survival probability of
97.53%. The respective functions t 7→ g(t) are computed via simple bisection. The interest
rate is fixed at r = 1%, the recovery at R = 40%. As our base case we consider a compound
Poisson specification with µ = 1, jump intensity l = 1, and Γ(n, ν) distributed jumps.

Model µ l n ν α β upfront t2 t3 t4 t5
Example 1 1 1 1.5 - - 16.61 32.67 30.06 27.53 22.34

2.2(1) 1 1 2 3 - - 15.57 34.26 33.10 31.38 26.20
Example 1 1 2 3 0.5 1 20.93 37.52 33.65 28.73 17.92

2.2(2) 1 1 2 3 0.75 1 17.83 35.83 33.87 31.12 23.66
1 1 2 3 0.25 1 25.41 37.31 27.45 18.14 6.37

0.5 1 2 3 0.5 1 14.19 61.56 55.11 47.03 29.44
1 1.5 2 3 0.5 1 17.26 50.77 45.45 38.75 24.16
1 1 3 3 0.5 1 17.46 36.19 35.22 33.25 25.78
1 1 2 2 0.5 1 17.78 35.80 33.86 31.13 23.73

Example 1 1 - 1.5 0.5 1 21.43 33.72 28.61 24.04 16.05
2.2(3) 1 1 - 1.5 0.75 1 18.63 33.36 29.87 26.57 20.17

1 1 - 1.5 0.25 1 25.55 31.74 23.03 16.41 7.72
0.5 1 - 1.5 0.5 1 14.88 55.54 47.18 39.71 26.61
1 1.5 - 1.5 0.5 1 17.88 45.71 38.77 32.58 21.76
1 1 - 3 0.5 1 25.66 31.61 22.77 16.11 7.46

Table 1. CDO tranche spreads (5 year maturity, quarter-yearly premium
frequency) for various dependence structures. For the equity tranche, the
upfront payment is quoted in %, while a running spread of 500 bps is fixed.
The spreads of the remaining tranches t2,. . .,t5 are quoted in bps. To
compare the entries across the model specifications, note that Γ(1, ν) =
exponential(ν). The tranche segmentation is done according to the iTraxx
Europe convention.

We draw the following conclusions from Table 1: (1) In the compound Poisson case 2.2(1),
if we move from Γ(1, 1.5) to Γ(2, 3) (note that the expected jump magnitute remains the
same), the level of dependence increases slightly such that the equity spread is reduced and
the senior tranches trade at higher spreads. Cases with higher jumps (i.e. ν ↘) or more
frequent jumps (i.e. l↗) also increase the level of dependence, however, these obvious cases
are not presented. (2) In the case of an exponential response function 2.2(2), the level of
dependence is increasing in α, with the compound Poisson case as limit for α↗ 1. Altering
β has only little influence on CDO spreads (we investigated this sensitivity but did not report
numerical results for the sake of brevity). Moreover, the level of dependence is increasing in
the jump intensity l and decreasing in the drift µ. (3) In the case 2.2(3) of a rational response
function and exponentially distributed jumps, we note that the model-implied dependence
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(and thus spreads of senior tranches) is again increasing in α, decreasing in µ, and increasing
in the expected number l and size 1/ν of jumps. The limit for α↗ 1 is again the compound
Poisson specification.

5. Application to insurance portfolios

The shot-noise portfolio default model can easily be modified to suit various actuarial
applications and we refer to [31] for a general account on this topic; related approaches
include [22] and [8]. Spoken generally, a portfolio of insurance claims can be modeled via its
claim arrival times and the associated loss magnitudes.7 The claim arrival times, as given
below in (17), have stylized statistical properties that allow for an actuarial interpretation:
often, multiple losses are caused by the same adverse event, e.g., a flood, a hurricane, etc.
This corresponds to a jump of S in our model. The resulting claim arrival times, however,
might not be immediate at such an event. This effect is governed via the function h, allowing
us to model various shapes of loss reporting pattern. Often, the reporting period is limited,
say to T ∗, and we may cover this case by letting h(T ∗) = 1.

Moreover, in actuarial applications, we often have hierarchical dependence structures,
since groupings by geographic regions or exposures to specific risk factors occur quite natu-
rally. Such effects can be modeled via multiple driving shot-noise processes as we outline in
the following. Note that depending on the application, Q can be the real-world probability
measure or a risk-neutral measure used for pricing.

Approximation of the loss function. We consider N risk factors, indexed by n = 1, . . . , N .
The claim amounts Z1, Z2, . . . occur at the arrival times τ1, τ2, . . . . We assume that for each
risk factor n there exists a shot-noise process Sn. As an immediate extension of Proposition
4.1 we obtain an approximation of the losses if the number of insured contracts is sufficiently
large. We assume that the individual risk characteristics can be grouped into M groups:
consider i.i.d. (Eij)i,j∈N, exponential(1)-distributed and independent of the shot-noise pro-
cesses S := (S1, . . . , SN ). For each group m the risk characteristics is denoted by θm ∈ RN .
Assume that

τkm = inf
{
t ≥ 0 : θmSt ≥ Ekm

}
. (17)

We assume that (A1) holds and consider the loss process

Lk(t) :=
1

nk1 + · · ·+ nkM

M∑
m=1

nkm∑
i=1

1{τim≤t}Zim.

Assume that in each group the claim sizes have expectation Z̄m < ∞. The limit of the
expectation of the losses conditional on S is

L(t) :=

M∑
m=1

αm(1− e−θmSt)Z̄m.

An analogous argument to Proposition 4.1 now yields that

lim
k→∞

sup
t≥0
|Lk(t)− L(t)| = 0

7The most straightforward approach is to take i.i.d. loss sizes; this even allows for the generalization

of the LHP approximation if the loss severity has existing expectation. More advanced might be a setting

where all loss magnitudes between two events are stochastically dependent. This can be achieved, e.g., via
an Archimedean dependence structure induced by taking the variable V as mixing variable in a [27] type

conditionally i.i.d. model. See [2] for an overview of this topic.
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Q-almost surely.

Catastrophe bonds. The so-called CAT bonds are a common product for insurers. Instead
of buying reinsurance on their claims it enables the insurer to pass their risk to investors.
A CAT bond offers a coupon payment c at payment dates t1, . . . , tK and the repayment of
the principal 1 at tK if no trigger event happend. In the case of a trigger event happend,
the coupons are ceased and a fraction δ of the principal is payed back.

As an example we consider as trigger event if the loss process L crosses a barrier B and
assume zero interest rates. In this case the payment at tk would be

fk(Ltk) =

{
c+ 1{k=K}, if Ltk ≤ B,
δ1{k=K}, if Ltk > B.

for k = 1, . . . ,K. The value of the CAT bond then computes to the expectation of discounted
payoffs, i.e.

T∑
k=1

E
(
fk(Ltk)

)
.

The expectations can now be computed either by the above approximation result or by
means of a Monte-Carlo simulation based on Algorithm 2.1.

For more information on CAT bonds we refer to [7] or [23]. Our model also extends the
approach in [8], where shot-noise Cox processes in an exponential structure and α = 0 (see
Example 2.1(3)) have been applied to derivatives on a catastrophe index.

Non-proportional reinsurance contracts. A third application for our framework is the pric-
ing of non-proportional reinsurance contracts, written on an insurance portfolio. From a
structural point of view, such contracts bear close similarities to CDOs: both are bilateral
contracts where the payment streams depend (in a non-linear way) on the accumulated loss
/ number of claims within the reference portfolio. Consequently, pricing and risk manage-
ment requires the portfolio loss distribution (or an approximation thereof). In the present
context, we might either use the LHP approximation or, if a more complicated structure is
postulated and the assumptions behind the approximations are not justified, implement the
pricing problem by means of a Monte-Carlo simulation.

6. Conclusion and outlook

We have presented a new bottom-up multivariate default model which allows for interest-
ing statistical properties concerning the model-implied dependence structure among default
times. This includes positive lower tail dependence, the possibility for joint defaults, and
time-inhomogeneous innovation; while the model is still numerically tractable. This renders
the model suitable for many applications. We exemplarily treated the pricing of CDOs and
sketched various actuarial applications. An interesting open problem is the estimation of
the model from historical data and the detailed analysis of the insurance applications.

Appendix A. Explicit computations

For the reader’s convenience we provide the following calculations used in the text:

Lemma A.1. We have that∫
an

x(a+ bx)n
dx = ln

( x

a+ bx

)
+
n−1∑
i=1

ai

i(a+ bx)i

for a, b > 0 and x > max{−b−1a, (1− b)−1a}.
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Proof. We proof the statement by induction. Indeed, we have that∫
a

x(a+ bx)
dx = ln

( x

a+ bx

)
.

Note that
an

x(a+ bx)n
=

an−1

x(a+ bx)n−1
− an−1b

(a+ bx)n

such that together with

−
∫

an−1b

(a+ bx)n
dx =

an−1

(n− 1)(a+ bx)n−1

we may conclude. �

Now we can provide the proof of (7).

Lemma A.2. Consider ϕ(θ) = νn(ν+θ)−n and h(t) = α+(1−α)(1−e−βt) with α ∈ [0, 1].
Then, for all θ ≥ 0, lnE(e−θSt) equals

− (µθ + l)t+
l

β

(
ν

ν + θ

)n [
βt− ln

(
ν + αθ

ν + θ + θ(α− 1)e−βt

)
+

n−1∑
i=1

(ν + θ)i

i

(
1

(ν + θα)i
− 1

(ν + θ + θ(α− 1)e−βt)i

)]
.

Proof. We start from Proposition 2.1 and consider β 6= 0. The main step is to compute∫ t

0

ϕ(θh(s))ds =

∫ t

0

νn

(ν + θ(α+ (1− α)(1− e−βs)))n
ds

=
1

β

∫ 1

e−βt

νn

x(ν + θ(α+ (1− α)(1− x)))n
dx

=
νn

β(ν + θ)n

∫ 1

e−βt

(ν + θ)n

x(ν + θ + θ(α− 1)x)n
dx.

Using a = ν + θ and b = θ(α− 1) in Lemma A.1 yields that this expression equals

νn

β(ν + θ)n

{
βt+ ln

(
ν + θ + θ(α− 1)e−βt

)
− ln(ν + αθ)

+

n−1∑
i=1

(ν + θ)i

i

[ 1

(ν + θ + θ(α− 1))i
− 1

(ν + θ + θ(α− 1)e−βt)i

]}
.

With (4) we obtain the claim. �

If V1 is exponentially distributed with parameter ν, then ϕ(θ) = E(exp(−θV1)) = ν(ν +
θ)−1. We now proof Equation (8).

Lemma A.3. Consider ϕ(θ) = ν(ν + θ)−1 and h(t) = α+ (1−α) t
t+β . Then, for all θ ≥ 0,

lnE(e−θSt) equals

−µθt+ l

(
− θt

ν + θ
+
βνθ(1− α)

(ν + θ)2
ln
(

1 +
(ν + θ)t

β(ν + αθ)

))
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Proof. As in the previous lemma we compute∫ t

0

ϕ(θh(s))ds =

∫ t

0

ν

(ν + αθ + θ(1− α) s
s+β )

ds

= ν

∫ t

0

β + s

β(ν + αθ) + (ν + θ)s
ds. (18)

It is easy to check that ∫
a+ s

b+ cs
ds =

1

c

(
s+ (a− b

c
) ln(b+ cs)

)
.

Hence with a = β, b = β(ν + αθ) and c = ν + θ we obtain

(18) =
ν

ν + θ

(
t+

(
β − β ν + αθ

ν + θ

)
ln
(β(ν + αθ) + (ν + θ)t

β(ν + αθ)

))
.

We use (2.1) and obtain that lnE(e−θSt) equals

−µθt− lt+
lν

ν + θ

(
t+ β

(θ(1− α)

ν + θ

)
ln
(

1 +
(ν + θ)t

β(ν + αθ)

))
= −µθt+ l

(
− θt

ν + θ
+
βνθ(1− α)

(ν + θ)2
ln
(

1 +
(ν + θ)t

β(ν + αθ)

))
and we conclude. �
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