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Abstract: Copulas are a general tool for assess-
ing the dependence structure of random variables.
Important properties as well as a number of exam-
ples are discussed, including Archimedean copulas
and the Marshall-Olkin copula. As measures of the
dependence we consider linear correlation, rank
correlation, the coefficients of tail dependence and
association.

Copulas are a tool for modeling and capturing
the dependence of two or more random variables
(rvs). In the work of [22] the term copula was
used the first time; it is derived from the Latin
word copulare, to connect or to join. Similar in
spirit, Hoeffding studied distributions under “arbi-
trary changes of scale” already in the 1940s, see
[7].

The main purpose of a copula is to disentangle
the dependence structure of a random vector from
its marginals. A d-dimensional copula is defined
as a function C : [0, 1]d → [0, 1] which is a cu-
mulative distribution function (cdf) with uniform1

marginals. On one side, this leads to the following
properties:

1. C(u1, . . . , ud) is increasing in each component
ui, i ∈ {1, . . . , d};

2. C(1, . . . , 1, ui, 1, . . . , 1) = ui for all 1 ≤ i ≤ d;

3. For ai ≤ bi, 1 ≤ i ≤ d, C satisfies the rectangle

1Although standard, it is not necessary to consider uni-
form marginals (see copulas).

inequality

2X

i1=1

· · ·
2X

id=1

(−1)i1+···+id C(u1,i1 , . . . , ud,id) ≥ 0,

where uj,1 = aj and uj,2 = bj .

On the other side, every function satisfying i.–iii. is
a copula. Furthermore, C(1, u1, . . . , ud−1) is again
a copula and so are all k-dimensional marginals
with 2 ≤ k < d.

The construction of multivariate copulas is diffi-
cult. There is a rich literature on uni- and bivari-
ate distributions but many of this families do not
have obvious multivariate generalizations2. Sim-
ilar in spirit, it is not at all straightforward to
generalize a two-dimensional copula to higher di-
mensions. For example, consider the construction
of 3-dimensional copulas. A possible attempt is
to try C1(C2(u1, u2), u3) where C1, C2 are bivari-
ate copulas. However, already for C1 = C2 =
max{u1 + u2− 1, 0} (the countermonotonicity cop-
ula, introduced in Section 1.1) this procedure fails.
See [18], Section 3.4 for further details. Also Chap-
ter 4 in [11] gives an overview of construction mul-
tivariate copulas with different concepts. In partic-
ular it discusses the construction of a d-dimensional
copulas given the set of d(d − 1)/2 bivariate mar-
gins.

The class of Archimedean copulas (see also the
following section on Archimedean copulas) is an im-
portant class for which the construction of multi-
variate copulas can be performed quite generally. A
natural example of a 3-dimensional Archimedean
copula is given by the following exchangeable
Archimedean copula:

C(u1, u2, u3) = φ−1(φ(u1) + φ(u2) + φ(u3)) (1)

with appropriate generator φ. However, for appro-
priate φ1,φ2,

φ−1
1 (φ2 ◦ φ−1

1 (φ1(u1) + φ1(u2)) + φ2(u3)) (2)

also gives a 3-dimensional copula (see [14], Section
5.4.3). It is of course possible that φ1 and φ2 are
generators of different types of Archimedean copu-
las.

2One example is the exponential distributions whose mul-
tivariate extension leads to the Marshall-Olkin copula, intro-
duced in a following paragraph.
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The key to the separation of marginals and de-
pendence structure is the quantile transformation.
Let U be a standard uniform rv and F−1(y) :=
inf{x : F (x) ≥ y} be the generalized inverse of F .
Then

P
°
F−1(U) ≤ x

¢
= F (x). (3)

This result is frequently used for simulation: the
generation of uniform rvs is readily implemented
in typical software packages and if we are able to
compute F−1, we can sample from F using (3).

On the contrary, the probability transformation
is used to compute copulas implied from distribu-
tions, see the following section on ”Copulas derived
from distributions”: consider X having a continu-
ous distribution function F , then F (X) is standard
uniform. 3

Sklar’s theorem. It is not surprising that every
distribution function inherently embodies a copula
function. On the other side, any copula entangled
with some marginal distributions in the right way,
leads to a proper multivariate distribution function.
This is the important contribution of Sklar’s theo-
rem [22]. RanF denotes the range of F .

Theorem. Consider a d-dimensional cdf F with
marginals F1, . . . , Fd. There exists a copula C, such
that

F (x1, . . . , xd) = C
°
F1(x1), . . . , Fd(xd)

¢
(4)

for all xi in [−∞,∞], i = 1, . . . , d. If Fi is con-
tinuous for all i = 1, . . . , d then C is unique; oth-
erwise C is uniquely determined only on RanF1 ×
· · · × RanFd. On the other hand, consider a cop-
ula C and univariate cdfs F1, . . . , Fd. Then F as
defined in (4) is a multivariate cdf with marginals
F1, . . . , Fd.

It is important to note that for discrete distri-
butions copulas are not as natural as they are for
continuous distributions, compare [8].

In the following we therefore concentrate on con-
tinuous Fi, i = 1, . . . , d. It is interesting to exam-
ine the consequences of representation (4) for the
copula itself. Using that F ◦ F−1(y) = y for any
continuous cdf F , we obtain

C(u) = F
°
F−1

1 (u1), . . . , F−1
d (ud)

¢
. (5)

3See, for example [14], Proposition 5.2.
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Figure 1: According to the Fréchet-Hoeffding
bounds every copula has to lie inside of the pyra-
mid shown in the graph. The surface given by
the bottom and back side of the pyramid (the
lower bound) is the countermonotonicity copula
C(u, v) = max{u + v − 1, 0}, while the front side
(the upper bound) is the comonotonicity copula,
C(u, v) = min(u, v).

While relation (4) usually is the starting point for
simulations that are based on a given copula and
given marginals, relation (5) rather proves as a the-
oretical tool to obtain the copula from any multi-
variate distribution function. This equation also
allows to extract a copula directly from a multi-
variate distribution function.

Invariance under transformations. An im-
portant property of copulas is that it is invari-
ant under strictly increasing tansformations: for
strictly increasing functions Ti : R → R, i =
1, . . . , d the rvs X1, . . . ,Xd and T1(X1), . . . , Td(Xd)
have the same copula.

Bounds of copulas. Hoeffding and Fréchet inde-
pendently derived that a copula always lies in be-
tween certain bounds, compare Figure 1. The rea-
son for this is the existence of some extreme cases
of dependency, co- and countermonotonicity. The
so-called Fréchet-Hoeffding bounds are given by

max
n dX

i=1

ui + 1− d, 0
o
≤ C(u) ≤ min{u1, . . . , ud},

(6)
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which holds for any copula C. However, whereas
a comonotonic copula exists in any dimension d,
there is no countermonotonicity copula in the case
of dimensions greater than two4.

1.1 Important copulas

First of all, the independence copula is given by

dY

i=1

ui. (7)

Random variables are independent if and only if
their copula is the independence copula.

The comonotononicity copula or the Fréchet-
Hoeffding upper bound is given by

min{u1, . . . , ud}. (8)

Rvs X1, . . . ,Xd are called comonotonic, if their
copula is as in (8). This is equivalent to
(X1, . . . ,Xd) having the same distribution as
(T1(Z), . . . , Td(Z)) with some rv Z and strictly in-
creasing functions T1, . . . , Td. Hence, comonotonic-
ity refers to perfect dependence in the sense where
all rvs are, in an increasing and deterministic way,
depending on Z.

The other case of perfect dependence is given
by countermonotonicity. The countermonotonicity
copula reads

max{u1 + u2 − 1, 0}. (9)

Two rvs with this copula are called countermono-
tonic. This is equivalent to (X1,X2) having the
same distribution as (T1(Z), T2(Z)) for some rv Z
and T1 being increasing and T2 being decreasing or
vice versa. However, the Fréchet-Hoeffding lower
bound as given in equation (6) is not a copula for
d > 2, see [14], Example 5.21.

Copulas derived from distributions. The
probability transformation5 allows to obtain the
copula inherent in multivariate distributions: for
a multivariate cdf F with continuous marginals Fi

the inherent copula is given by

C(u) = F
°
F−1

1 (u1), . . . , F−1
d (ud)

¢
. (10)

4See [14], Example 5.21, for a counter-example.
5For a rv X with continuous cdf F the rv F (X) is stan-

dard uniform, see Section 1.

For example, for a multivariate normal distribu-
tion, the implied copula is called Gaussian copula.
For a d-dimensional rv X the correlation matrix6 Γ
is obtained from the covariance matrix by scaling
each component to variance 1. Hence Γ is given
by the entries Corr(Xi,Xj), 1 ≤ i, j ≤ d (compare
correlation and correlation risk). For such a corre-
lation matrix Γ the Gaussian copula is given by

ΦΓ(Φ−1(u1), . . . ,Φ−1(ud)). (11)

In a similar fashion one obtains the t-copula or the
Student copula

tν,Γ(t−1
ν (u1), . . . , t−1

ν (ud)), (12)

where Γ is a correlation matrix, tν is the cdf of the
one dimensional tν distribution and tν,Γ is the cdf
of the multivariate tν,Γ distribution. The mixing
nature of the t-distribution leads to a dramatically
different behavior in the tails, which is an impor-
tant property in applications. See the following sec-
tion on tail dependence.

Archimedean copulas. An important class of
analytically tractable copulas are Archimedean cop-
ulas. For the bivariate case, consider a continuous
and strictly decreasing function φ : [0, 1] :→ [0,∞]
with φ(1) = 0. Then C(u1, u2) given by
(

φ−1(φ(u1) + φ(u2)) if φ(u1) + φ(u2) ≤ φ(0),
0 otherwise

(13)

is a copula if and only if φ is convex; see [18], The-
orem 4.1.4. If φ(0) =∞ the generator is said to be
strict and C(u1, u2) = φ−1(φ(u1) + φ(u2)).

For the multivariate case there are different pos-
sibilities of generalization. Quite a special case is
when the copula is of the form

φ−1(φ(u1) + · · · + φ(ud)). (14)

These are so-called exchangeable Archimedean cop-
ulas and [15] give a complete characterization of
such φ leading to a copula of the form (14).
One may also consider asymmetric specifications
of multivariate Archimedean copulas see [14] Sec-
tion 5.4.2 and 5.4.3. We present some examples of

6See correlation and correlation risk.
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Archimedean copulas in the bivariate case: From
the generator (− lnu)θ one obtains the bivariate
Gumbel copula or Gumbel-Hougaard copula :

exp
≥
−

h
(− lnu1)θ + (− lnu2)θ

i 1
θ
¥
, (15)

where θ ∈ [1,∞). For θ = 1 it coincides with the
independence copula, and for θ → ∞ it converges
to the comonotonicity copula. The Gumbel copula
has tail dependence in the upper right corner.

The Clayton copula is given by7

°
max{u−θ

1 + u−θ
2 − 1, 0}

¢− 1
θ , (16)

where θ ∈ [−1,∞) \ {0}. For θ → 0 it converges
to the independence copula, and for θ → ∞ to
the comonotonicity copula. For θ = −1 we obtain
the Fréchet-Hoeffding lower bound. The generator
θ−1(u−θ − 1) of the Clayton copula is strict only if
θ > 0. In this case

C Cl
θ (u1, u2) =

°
u−θ

1 + u−θ
2 − 1

¢− 1
θ (17)

The generator ln(e−θ−1)− ln(e−θu−1) leads to
the Frank copula given by

−1
θ

ln
µ

1 +
(e−θu1 − 1) · (e−θu2 − 1)

e−θ − 1

∂
, (18)

for θ ∈ R \ {0}.
The generalized Clayton copula is obtained from

the generator θ−δ(u−θ − 1)δ:

≥
[(u−θ

1 − 1)δ + (u−θ
2 − 1)δ]

1
δ + 1

¥− 1
θ
, (19)

with θ > 0 and δ ≥ 1. Note that for δ = 1 the
standard Clayton copula is attained, compare [18]
Example 4.19.

Further examples of Archimedean copulas may
be found in [18], in particular one may consider
Table 4.1 therein as well as Sections 4.5 and 4.6.

The Marshall-Olkin copula. The Marshall-
Olkin copula is a copula with singular component.
For intuition, consider two components which are

7For generating the Clayton copula it would be sufficient
to use (u−θ−1) instead of 1

θ (u−θ−1) as generator. However,
for θ < 0 this function is increasing and the above result
would not apply.

subject to certain shocks which lead to failure of ei-
ther one of them or both components. The shocks
occur at times assumed to be independent and ex-
ponentially distributed. Denote the realized shock
times by Z1, Z2 and Z12. Then we obtain for the
probability that the two components live longer
than x1 and x2, respectively,

P (Z1 > x1)P (Z2 > x2)P (Z12 > max{x1, x2}).
(20)

This extends to the multivariate case in a straight-
forward way, compare [4] and [18]. The related
copula equals

min{u2 · u1−α1
1 , u1 · u1−α2

2 }, (21)

with αi ∈ [0, 1]. A similar family is given by the
Cuadras-Augé copulas

min{u1, u2} ·
°
max{u1, u2}

¢α
, (22)

α ∈ [0, 1], see [3].

2 Measures of dependence

Measures of dependence summarize the dependence
structures of rvs. There are three important con-
cepts: linear correlation, rank correlation and tail
dependence. A further concept of dependence is
association see [6] or [17].

Linear correlation. Linear correlation is a well
studied concept. It is a dependence measure which
is useful only for elliptical distributions (see mul-
tivariate distributions). The reason for this is
that elliptical distributions are fully described by
mean vector, covariance matrix and a characteris-
tic generator function. As mean and variances are
determined by the marginal distributions, the cop-
ulas of elliptical distributions depend only on the
covariance matrix and the generator function. Lin-
ear correlation therefore has a distinguished role in
this class which it does not have in other multivari-
ate models.

Rank correlation. Rank correlations describe
the dependence structure of the ranks, i.e. the
dependence structure of the considered rvs when
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transformed to uniform marginals using the prob-
ability transformation. Most importantly, this im-
plies a direct representation in terms of the under-
lying copula, compare (5). We consider Kendall’s
tau and Spearman’s rho, which also play an impor-
tant role in nonparametric statistics.

For rvs X = X1, . . . ,Xd with marginals Fi, i =
1, . . . , d, Spearman’s rho is defined by

ρS(X) := Corr
°
F1(X1), . . . , Fd(Xd)

¢
; (23)

Corr is the correlation matrix whose entries are
given by Corr(Fi(Xi), Fj(Xj)).

Consider an independent copy X̃ of X. Then
Kendall’s tau is defined by

ρτ (X) := Cov
£
sign

°
X− X̃

¢i
. (24)

For d = 2,

ρτ (X1,X2) = P
°
(X1 − X̃1) · (X2 − X̃2) > 0

¢

− P
°
(X1 − X̃1) · (X2 − X̃2) < 0

¢

(25)

which explains this measure of dependency.
Both measures have values in [−1, 1]; they are 0

for independent variables (while there might also
be non-independent rvs with zero rank correlation)
and they equal 1 (−1) for the comonotonic (coun-
termonotonic) case. Moreover, they can directly be
derived from the copula of X, see [14], Proposition
5.29. For example,

ρS(X1,X2) = 12
1Z

0

1Z

0

°
C(u1, u2)− u1u2

¢
du1 du2.

(26)

In the case of a bivariate Gaussian copula one ob-
tains8 ρS(X1,X2) = 6

π arcsin ρ
2 and a similar ex-

pression for ρτ .
For other examples and certain bounds which in-

terrelate those two measures we refer to [18], Sec-
tions 5.1.1 – 5.1.3. For multivariate extensions see
e.g. [20] and [23].

Tail dependence. One distinguishes between
upper and lower tail dependence. Consider two rvs

8Compare [14], Theorem 5.36. ρS and ρτ for elliptic dis-
tributions are also covered.

X1 and X2 with marginals F1, F2 and copula C.
Upper tail dependence means intuitively, that with
large values of X1 also large values of X2 are ex-
pected. More precisely, the coefficient of upper tail
dependence is defined by

λu := lim
q%1

P
°
X2 > F−1

2 (q)
ØØX1 > F−1

1 (q)
¢
, (27)

provided that the limit exists and λu ∈ [0, 1]. The
coefficient of lower tail dependence is

λl := lim
q&0

P
°
X2 ≤ F−1

2 (q)
ØØX1 ≤ F−1

1 (q)
¢
. (28)

If λu > 0, X1 and X2 are called upper tail de-
pendend, while for λu = 0 they are asymptotically
independent in the upper tail; analogously for λl.
For continuous cdfs Bayes’ rule gives

λl = lim
q&0

C(q, q)
q

(29)

and

λu = 2 + lim
q&0

C(1− q, 1− q)− 1
q

. (30)

A Gaussian copula has no tail dependence if the
correlation is not equal to 1 or−1. For the bivariate
t-distribution

λl = λu = 2 tν+1

µ
−

s
(ν + 1)(1− ρ)

1 + ρ

∂
(31)

provided that ρ > −1. Note that even for zero
correlation this copula shows tail dependence.

Tail dependence is a key quantity for joint quan-
tile exceedances, see Example 5.34 in [14]: a mul-
tivariate Gaussian distribution will give a much
smaller probability to the event that all returns
from a portfolio are below the 1% quantiles of
their respective distributions than a multivariate
t-distribution. The reason for this is the difference
in the tail dependence.

Association. A somewhat stronger concept than
correlation is the so-called association introduced
in [6]. If Cov(X,Y ) ≥ 0 then one would consider
X and Y as somehow associated. If, moreover,
Cov(f(X), g(Y )) ≥ 0 for all pairs of nondecreas-
ing functions f, g, they would be considered more
strongly associated. If Cov(f(X,Y ), g(X,Y )) ≥ 0
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for all pairs of functions f, g which are nondecreas-
ing in each argument, an even stronger dependence
holds. One therefore calls rvs X1, . . . ,Xd =: X as-
sociated if Cov(f(X), g(X)) ≥ 0 for all f, g which
are nondecreasing and the covariance exists. Ex-
amples of associated rvs include independent rvs,
positively correlated normal variables and also the
generalized exponential distribution turning up in
the Marshall-Olkin copula.

3 Sampling from copulas

Consider given marginals F1, . . . , Fd and a given
copula C. The first step is to simulate (U1, . . . , Ud)
with uniform marginals and copula C. By (3), the
vector (F−1

1 (U1), . . . , F−1
d (Ud)) has copula C and

the desired marginals.
If the copula is inherited from a multivariate dis-

tribution, the task reduces to simulating this multi-
variate distribution, e.g. Gaussian or t-distribution.

If the copula is Archimedean, this task is more
demanding and we refer to [14], Algorithm 5.48 for
details.

4 Conclusion

On one side copulas are a very general tool to de-
scribe dependence structures and have been suc-
cessfully applied in many cases. However, the im-
mense generality is also a drawback in many appli-
cations and also the static character of this mea-
sure of dependence has been criticized; see the ref-
erenced literature. Needless to say, the application
of copulas has been a great success to a number
of fields, and especially in finance they are a fre-
quently used concept. They serve as an excellent
tool for calibrating dependence structures or stress
testing portfolios or other products in finance and
insurance as they allow to interpolate between ex-
treme cases of dependence.

Acknowledgements. The author thanks F. Du-
rante and R. Frey for helpful comments.

5 Related articles

correlation and correlation risk; default cor-
relation and asset correlation; typology of

risk exposures; operational risk; copulas (fi-
nancial econometrics); copulas and depen-
dence concepts in insurance

6 Literature

The literature on copulas is growing fast. The vital
article on copulas copulas by P. Embrechts gives
an excellent overview, guide to the literature and
applications. An introduction to copulas which ex-
tends this note in many ways may be found in [21].
For a detailed exposition of copulas with different
applications in view we refer to [14], [19] as well as
to [4]. [2] gives additional examples and [13] ana-
lyzes extreme financial risks. Estimation of copulas
is discussed in [14], Section 5.5, [1] and [10]. For
an in-depth study of copulas consider [18] or [11].
Interesting remarks of the history and the devel-
opment of copulas may be found in [7]. For more
details on Marshall-Olkin copulas, in particular the
multivariate ones, see [4] and [18]. In the mod-
elling of Lévy processes (see Lévy processes) one
considers dependency of jumps where the measure
is no longer a probability measure. This leads to
the development of so-called Lévy copulas, compare
[12]. The mentioned pitfalls with linear correlation
are discussed in detail in [5] or [14], Chapter 5.2.1.
For a discussion on the general difficulties in the
application of copulas we refer to [16] and [9].
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Name Copula Paramter range

Independence or
product copula

Π(u) =
dY

i=1

ui

Comonotonicity copula or
Fréchet-Hoeffding upper bound

M(u) = min{u1, . . . , ud}

Countermonotonicity copula or
Fréchet-Hoeffding lower bound

W (u1, u2) = max{u1 + u2 − 1, 0}

Gaussian copula∗ C Ga
Γ (u) = ΦΓ(Φ−1(u1), . . . , Φ−1(ud))

t- or Student copula∗ C t
ν,Γ(u) = tν,Γ(t−1

ν (u1), . . . , t−1
ν (ud))

Gumbel copula or
Gumbel-Hougaard copula

C Gu
θ (u1, u2) = exp

≥
−

h
(− ln u1)

θ + (− ln u2)
θ
i 1

θ
¥

θ ∈ [1,∞)

Clayton copula+ C Cl
θ (u1, u2) =

≥
max{u−θ

1 + u−θ
2 − 1, 0}

¥− 1
θ θ ∈ [−1,∞)

Generalized Clayton+

copula
C Cl

θ,δ(u1, u2) =
≥h

(u−θ
1 − 1)δ + (u−θ

2 − 1)δ
i 1

δ + 1
¥− 1

θ θ ≥ 0, δ ≥ 1

Frank copula+ C F r
θ (u1, u2) = −

1

θ
ln

µ
1 +

(e−θu1 − 1) · (e−θu2 − 1)

e−θ − 1

∂
θ ∈ R

Marshall-Olkin copula or
generalized Cuadras-Augé copula

Cα1,α2 (u1, u2) = min{u2 · u
1−α1
1 , u1 · u

1−α2
2 } α1, α2 ∈ [0, 1]

Table 1: List of some copulas. For the Gumbel, Clayton, Frank and the Marshall-Olkin copula only
the bivariate versions are stated. References to the multivariate versions are given in the text. Further
examples of copulas may be found in [18], Table 4.1 (page 94) and Sections 4.5 and 4.6.

∗: where Γ is a correlation matrix, i.e. a covariance matrix where each variance is scaled to 1.
+: for the (generalized) Clayton and the Frank copula the case θ = 0 is given as the limit for θ → 0,
which leads to the independence copula in both cases.
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