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Abstract: Correlation is a well-established con-
cept to capture the linear relationship between two
or more variables. This article covers basic proper-
ties, fallacies of correlation and correlation risk in
financial applications.

1 Correlation

Correlation is a well-known concept for measuring
the linear relationship between two and more vari-
ables. It plays a major role in a number of classi-
cal approaches in finance: the capital asset pricing
model (see CAPM) as well as arbitrage pricing
theory (APT) rely on correlation as a measure for
the dependence of financial assets, see [3]. In the
multivariate Black-Scholes model correlation of the
log-returns is used as a measure of the dependence
between assets, [2], [14], [5]. The main reason for
the importance of correlation in these frameworks
is that the considered random variables (rvs) obey –
under an appropriate transformation – a multivari-
ate normal distribution. Correlation is moreover a
key driver in portfolio credit models, and the term
default correlation has been coined for this. Corre-
lation as a measure of dependence fully determines
the dependence structure for normal distributions
and, more generally, elliptical distributions while it
fails to do so outside this class. Even within this
class correlation has to be handled with care: while
a correlation of zero for multivariate normally dis-
tributed rvs implies independence, a correlation of
zero for, say, t-distributed rvs does not imply in-
dependence, compare the following paragraph on
correlation pitfalls. More general measures of de-
pendence help to avoid these pitfalls. Example of
more general measures for dependence are rank cor-
relation, the coefficient of tail dependence and asso-

ciation (see copulas and dependence measure-
ment).

Hence, approaches relying on multivariate Brow-
nian motions and transformations thereof naturally
determine the dependence structure via correlation.
Extending this, there are a number of approaches
generalizing the simple linear correlation to a time-
varying and stochastic concept see [4], [8] and ref-
erences therein.

For two random variables X and Y with finite
and positive variances their correlation is defined
as

Corr(X,Y ) =
Cov(X,Y )p

Var(X) · Var(Y )
, (1)

where

Cov(X,Y ) = E
h
(X − E(X)) (Y − E(Y ))

i
(2)

is the covariance of X and Y . We state some prop-
erties of correlation: Corr(X,Y ) is a number in
[−1, 1] and it is equal to 1 or −1 if and only if
X and Y are linearly related, i.e. Y = a + b X for
constants a, b with b 6= 0. The correlation is −1 if
b < 0 and 1 if b > 0. For constants a, b

Corr(X + a, Y + b) = Corr(X,Y ). (3)

If X and Y are independent then Corr(X,Y ) =
0. On the other hand, if Corr(X,Y ) = 0, X and
Y are called uncorrelated. In the case when (X,Y )
have a bivariate normal distribution, this implies
independence of X and Y . Otherwise this impli-
cation is typically wrong: even when X and Y are
normally distributed (but (X,Y ) has not a bivari-
ate normal distribution – compare copulas and de-
pendence measurement for an exposition how this
may be achieved using copulas), Corr(X,Y ) = 0
does not imply independence.

For two random variables belonging to a given
class of elliptical distributions1 which includes the
normal distribution and the Student t-distribution,
correlation fully determines the dependence struc-
ture. However, note that uncorrelated t-distributed
random variables are not independent.

If X is m-dimensional and Y n-dimensional then
Cov(X,Y) is given by the m×n-matrix with entries
Cov(Xi, Yj). Σ = Cov(X,X) is called covariance

1Compare [13], Theorem 3.25. Section 3.3 therein gives
a short introduction to elliptical distributions.
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matrix. Σ is symmetric and positive semi-definite,
ie x>Σx ≥ 0 for all x ∈ Rm. Moreover, one has

Cov(a + BX, c + DY) = B Cov(X,Y)D> (4)

for a ∈ Ro, c ∈ Rp, B ∈ Ro×m, D ∈ Rp×n.
Similarly, Corr(X,Y) has the entries Corr(Xi, Yj),
1 ≤ i ≤ m, 1 ≤ j ≤ n. The correlation matrix of X
is Corr(X,X). It is again symmetric and positive
semi-definite. Correlation is invariant under linear
increasing transformations such that

Corr(a + bX, c + dY ) = Corr(X,Y ) (5)

if bc > 0. If bc < 0 only the sign of the correlation
changes.

Correlation pitfalls. When correlation is used
as measure of dependence a number of pitfalls arise,
compare [7] or [13], Chapter 5.2.1. for a detailed
exposition. In the following we list the typical pit-
falls and give a hint why difficulties may arise when
linear correlation is used.

1. A correlation of 0 is not equivalent to inde-
pendence.
For (X,Y ) being jointly normal, Corr(X,Y ) =
0 implies independency of X and Y . In general
this is not true; even perfectly related rvs can
have zero correlation: consider X ∼ N (0, 1)
and Y = X2. Then Corr(X,Y ) = 0 and X
and Y are clearly not independent.

2. Correlation is invariant under linear transfor-
mations, but not under general transforma-
tions.
For example, two log-normal rvs have a dif-
ferent correlation than the underlying normal
rvs, compare Example 5.26 in [13].

3. For given distributions of X and Y and some
given correlation in [−1, 1] it is in general not
possible to construct a joint distribution. For
example, if X and Y are log-normally dis-
tributed, the interval of attainable correlations
is a strict subset of [−1, 1] and becomes smaller
with increasing volatility, compare again Ex-
ample 5.26 in [13].

4. A small correlation does not imply a small de-
gree of dependency.
This is in particular implied by observation 3.,
and so it is in general wrong to deduce a small
degree of dependency from a small correlation.

1.1 Stylized facts

Asset correlation shows two typical stylized fea-
tures2:

• Correlation clustering: periods of high (low)
correlation are likely to be followed by periods
of high (low) correlation.

• Asymmetry and co-movement with volatility:
high volatility in falling markets goes hand in
hand with a strong increase in correlation, but
this is not the case for rising markets, see [12]
or [1].

In [16] the 1987 crash is analysed and correlation
risk is identified as a reason the co-movement of
stock-market declines and increasing volatility. No-
tably this reduces opportunities for diversification
in stock-market declines.

1.2 Estimating correlation

The estimation of correlation in financial data is
a delicate task as the underlying distribution typ-
ically has heavy tails. If this is the case it is
preferable to use robust methods in comparison
to non-robust methods like the sample correlation.
Evidence of the efficiency of robust methods like
Kendall’s rank correlation coefficient is provided in
[13], Section 3.3.4. Acknowledging that correlation
changes over time a number of approaches for dy-
namic correlation have been developed, see eg [8],
[4] and references therein.

2 Correlation risk

Correlation risk refers to the risk of a financial loss
when correlation in the market changes. It plays a
central role in risk management and the pricing of
basket derivatives:

Risk management. In risk management, corre-
lation risk refers to the risk of a loss in a financial
position occurring due to a difference between an-
ticipated correlation and realized correlation. In
particular, this occurs when the estimate of corre-
lation was wrong or the correlation in the market
changed.

2See, eg [17] and references therein.
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The risk management of a portfolio as well as
portfolio optimization heavily depends on the used
correlation. This is illustrated by the following sim-
ple example: assume that a financial position is
given by portfolio weights w1, . . . , wd and the dis-
tribution of the assets X is multivariate normal.
Then the P&L of the position is

Pd
i=1 wiXi, hence

normally distributed with mean
Pd

i=1 wiE(Xi) and
variance

dX

i,j=1

wiwj Cov(Xi,Xj),

which equals
Pd

i=1 w2
i Var(Xi) if the positions are

uncorrelated. Otherwise, the value-at-risk depends
on the correlations of all assets and therefore a
change in the correlation may significantly alter the
risk of the position.

In the elliptical world, the use of coherent risk
measures is related to the Markowitz approach
where the variance is used as a risk measure, see
[13], Section 6.1.5. The effects of stochastic cor-
relation on hedging strategies have also been con-
sidered in [9]. Section 5 therein gives also some
examples on stochastic correlation.

Basket derivatives. If the pricing of basket
derivatives is considered, the value of the deriva-
tive itself depends on the (unknown) correlation. In
this case, correlation risk refers to the change in the
value of the derivative with changing correlation.
Note that in contrast to the first example, already
the value of the derivative itself depends on the cor-
relation. Options of this kind typically are traded
in interest markets, foreign exchange markets or
credit markets, such as quanto options, rainbow
options, spread options or collateralized debt obli-
gations. In particular in credit markets the term
default correlation has been coined and contagion
and dependencies play a central role. For more ref-
erences on the role of default correlation risk in
credit risky markets see [10] and [11].

By analyzing prices of options on single names
and on market indices, [6] show that correlation
risk is priced in the options markets. Practitioners
trade priced correlation risk by using short posi-
tions in index options and long positions in indi-
vidual options, which is called dispersion trading.
A similar position can be taken with a correlation
swap.

In particular in credit markets, contagion and de-
pendencies play a central role. For more references
on the role of default correlation risk in credit risky
markets see [10] and [11].
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