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1. Introduction

In recent years the market for portfolio credit derivatives, which are derivatives with
a payoff linked to the credit loss in a portfolio, has seen a rapid growth and increased
liquidity. This has been followed by an intense research for understanding and modelling
the main feature driving these products, namely default dependence. The current credit
crisis undermines the necessity of models which can calibrate to market data on one side
and also capture contagion effects on the other side. The model proposed in this paper
is an affine model with a jump component. This allows to introduce a high dependence
between different obliger which is of immense importance for practical applications.

Affine models have been widely used in modelling of interest rates and credit risk, but
typically the jump component plays a minor role. However, the main driver of contagion
effects1 is the jump component. In this paper we concentrate on the jump component only,
while the results easily can be enriched by adding a diffusion component.

As an illustration of the tractability of the model we show a number of small numerical
studies. We consider a basket of obligors and calibrate this portfolio to a the given CDS-
spread. Under the calibrated model we price kth-to-default swaps and study the influence
of the parameters. This shows that on the one side it is easy to calibrate the model to
CDS spreads and on the other hand that the computation of kth-to default swaps is highly
tractable in our framework.

The rest of this paper is organized as follows. In Section 2 we introduce the shot noise
model that is used in the paper. Section 3 derives the formulas that are needed for pricing
portfolio credit derivatives and this is the main contribution of the paper. Next, Section
4 concretizes the results of Section 3 into an explicit and tractable example of the model.
Section 5 gives a short recapitulation of a credit default swap (CDS) and its portfolio
extension, the kth-to default swap. Finally, in Section 6 we use the results of Section
4, for numerical investigation of a number of properties of kth-to-default spreads. We
study the k-th-to default spreads as function of the average CDS spread in the portfolio
and investigate how some of the model parameters affect the kth-to default spreads when
keeping the CDS spread constant.

2. The model

Consider a filtered probability space (Ω,F ,F,Q) where the filtration F satisfies the usual
conditions. Q is a martingale measure equivalent to the objective measure P.

Let {Xi,j, Yj : 1 ≤ i ≤ m, j ≥ 1} be independent nonnegative random variables where
Xi,j has distribution function Fi and Yj has distribution function FY . Furthermore, let M
be a Poisson process with constant intensity ρ and denote its jump times by S1, S2, . . . .

1Contagion is the effect that a default of a company leads to an increased default probability of related
firms and came most apparent after the default of Lehman Brothers.
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Let λi = (λt,i)t≥0, 1 ≤ i ≤ m be m processes where λi satisfies the SDE

dλt,i = −δiλt,idt+ dCt,i

Ct,i =

Mt
∑

j=1

YjXi,j

(2.1)

The intuitive interpretation of (2.1) is that at the each jump time Sj of M , the process
λi jumps by the amount YjXi,j. Otherwise it decays exponentially with rate δi. This
process is a Markovian shot-noise process (compare, e.g. Dassios & Jang (2003) and
Gaspar & Schmidt (2008)). Furthermore, the dependence structure of the multivariate shot
noise process (λ1, λ2, . . . , λm) is determined by the process M and the random variables
{Yj : j ≥ 1}. If Y1 is constant, then λt,1, . . . , λt,m are independent conditional on M .

Consider a portfolio consisting of m obligors. The default time of obligor i is denoted
by τi. Let E1, . . . , Em be independent random variables, exponentially distributed with
parameter one, which also are independent of the processes {λi}. We define the default
time τi as

τi = inf

{

t > 0 :

∫ t

0

λs,ids ≥ Ei

}

,

which implies that τi have default intensities λi, see e.g. Lando (2004) or McNeil, Frey &
Embrechts (2005). This framework is typically called conditional independent modelling
of default times.

Let Gt = σ(λs,i : 0 ≤ s ≤ t, 1 ≤ i ≤ m). Then, for T > t, it is easy to see that

Q [τi > t | GT ] = exp

(

−

∫ t

0

λs,ids

)

. (2.2)

The following lemma will be useful.

Lemma 2.1. Let H(x) = δ−1(1− e−δx). Then

∫ t

0

λs,ids = λ0,iH(t) +
Mt
∑

j=1

YjXi,jH(t− Sj).

Proof. First, observe that the solution of the SDE (2.1) is given by

λt,i =
Mt
∑

j=0

YjXi,j exp
(

− δ(t− Sj)
)

,
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where we use Y0 = 1, X0 = λ0,i and S0 = 0 to simplify the notation. Hence

∫ t

0

λs,ids =

∫ t

0

Ms
∑

j=0

YjXi,je
−δ(s−Sj)ds

=

∫ t

0

Mt
∑

j=0

YjXi,je
−δ(s−Sj)1{Sj≤s}ds

=

Mt
∑

j=0

YjXi,je
δSj

∫ t

0

e−δs1{Sj≤s}ds

=
Mt
∑

j=0

YjXi,je
δSj

1

δ

(

e−δSj − e−δt
)

=

Mt
∑

j=0

YjXi,j

1

δ

(

1− e−δ(t−Sj )
)

and the conclusion follows. �

Note that Lemma 2.1 purely results from the shot-noise assumptions and can easily be
generalized to non-exponential decay, compare for example Gaspar & Schmidt (2008). It
moreover holds for arbitrary random variables ηj replacing YjXi,j. Furthermore, Lemma
2.1 holds both for inhomogeneous and homogeneous credit portfolios.

3. Pricing credit derivatives in the homogeneous model

Consider a portfolio consisting ofm obligors with default times τ1, τ2 . . . , τm and identical
recovery rates φ1 = φ2 = . . . = φm = φ. The credit loss Lt for this portfolio at time t, in
percent of the nominal portfolio value at t = 0, is given by

Lt =
1− φ

m

m
∑

i=1

1{τi≤t} =
1− φ

m
Nt

where Nt =
∑m

i=1 1{τi≤t} counts the number of defaults in the portfolio.
It is well known that in order to price portfolio credit derivatives – such as basket default

swaps or CDO tranches – on portfolios with homogeneous recoveries, it is enough to find
the distribution {Q (Nt = k)}mk=0 at different time points t, see e.g. Herbertsson (2008),
Frey & Backhaus (2008). Furthermore, to price CDS spreads we need the individual default
distributions Q (τi ≤ t).

In order to simplify computations further, one often assumes that the portfolio is homo-
geneous, which means that all default times are exchangeable. To this regard, consider

Q (Nt = k) =
∑

M⊂{1,...,m},|M |=k

Q

(

τi ≤ t : i ∈ M, τi > t : i 6∈ M
)

.



PRICING BASKET DEFAULT SWAPS IN SHOT-NOISE MODELS 5

Exchangeability means that the probability on the r.h.s. does only depend on the number
of defaults being smaller than t. Then

Q (Nt = k) =

(

m

k

)

Q

(

k
⋂

i=1

{τi ≤ t} ,

m
⋂

i=k+1

{τi > t}

)

(3.1)

which reduces the computations to find Q
(
⋂k

i=1 {τi ≤ t} ,
⋂m

i=k+1 {τi > t}
)

.
In this paper, we only consider exchangeable portfolios in our model given by (2.1). We

therefore make the following assumption in (2.1)

λi,0 = λ0, δi = δ and Fi = F for 1 ≤ i ≤ m. (3.2)

This implies that the default times are exchangeable and have the same distribution. We
can then state the following useful lemma.

Lemma 3.1. Under (3.2) we have that

Q (Nt = k) =

(

m

k

) k
∑

j=0

(

k

j

)

(−1)jG(t,m− k + j). (3.3)

where

G(t, k) := E

(

e−
∑k

i=1

∫ t
0 λs,ids

)

. (3.4)

Proof. Note that (3.2), conditional independency and (2.2) in (3.1) yields

Q (Nt = k) =

(

m

k

)

E

(

k
∏

i=1

(

1− e−
∫ t
0 λs,ids

)

e−
∑m

i=k+1

∫ t
0 λs,ids

)

=

(

m

k

)

E







1 +

k
∑

j=1

∑

∅6=T⊂{1,...,k},|T |=j

(−1)je−
∑

i∈T

∫ t
0 λs,ids



 e−
∑m

i=k+1

∫ t
0 λs,ids





Recall that G(t, k) = E

(

e−
∑k

i=1

∫ t
0 λs,ids

)

.

Then the homogeneity assumption (3.2) implies that for any T ⊂ {1, . . . , k} with |T | = j

E

(

e−
∑

i∈T

∫ t
0 λs,idse−

∑m
i=k+1

∫ t
0 λs,ids

)

= G(t, j +m− k)

and this and the above observation renders that

Q (Nt = k) =

(

m

k

) k
∑

j=0

(

k

j

)

(−1)jG(t,m− k + j).

which concludes the lemma. �

Thus, in order to find Q (Nt = k) it is sufficient to compute {G(t, ,m − k + j)}kj=0 for
any k = 1, . . . , m. Throughout we denote by X a prototype for Xi,j, for example X1,j and
similarly Y for Yj. Furthermore, recall that ϕX(z) = E

(

e−zX
)

is the Laplace transform of
the non-negative random variable X . The following result gives the necessary quantities
for finding {G(t, j)}.
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Proposition 3.2. Under (3.2) we have that

G(t, k) = e−kλ0H(t)−ρt · exp

(

ρt

∫

R

∫ 1

0

(

ϕX

(

yH(tz)
)

)k

dzFY (dy)

)

(3.5)

Proof. First, by Lemma 2.1

k
∑

i=1

∫ t

0

λs,ids =

k
∑

i=1

(

λ0,iH(t) +

Mt
∑

j=1

YjXi,jH(t− Sj)
)

. (3.6)

To compute the right hand side in (3.6) we use the following observations: Conditional
on Mt = ℓ the jump times {Si}

ℓ
i=1 are distributed like the order statistics of uniform

random variables over the interval, see for example p.502 in Rolski, Schmidli, Schmidt &
Teugels (1999). More precisely, let η1, η2, . . . , ηℓ be ℓ independent random variables all
with distribution U [0, t], then L(S1, . . . , Sℓ|Mt = ℓ) = L(η1:ℓ, . . . , ηℓ:ℓ) where {ηn:ℓ}

ℓ
n=1 is

the ordering of {ηn}
ℓ
n=1. Thus,

E

(

e−
∑k

i=1

∑Mt
j=1 YjXi,jH(t−Sj)

∣

∣

∣
Mt = ℓ

)

= E

(

e−
∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj:ℓ))

)

= E

(

e−
∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

)

(3.7)

where the last equality follows because all Yj, Xi,j are independent of η1, . . . , ηj and since
all Xi,j are exchangeable as they are independent and have identical distributions. By (3.2)
we have that λ0,i = λ0 and thus,

E

(

exp

(

−

k
∑

i=1

(

λ0,iH(t) +

Mt
∑

j=1

YjXi,jH(t− Sj)
)

)

∣

∣

∣
Mt = ℓ

)

= e−kλ0H(t)E

(

exp
(

−
k
∑

i=1

ℓ
∑

j=1

YjXi,jH(t(1− ηj))
)

)

. (3.8)

Next, we compute the expectation in (3.8). First,

E

(

e−
∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

∣

∣

∣
Y1 = y1, . . . , Yℓ = yℓ, η1 = z1, . . . , ηℓ = zℓ

)

= E

(

k
∏

i=1

ℓ
∏

j=1

e−yjXi,jH(t(1−zj ))

)

=

k
∏

i=1

ℓ
∏

j=1

E
(

e−yjXi,jH(t(1−zj ))
)

=

k
∏

i=1

ℓ
∏

j=1

ϕX

(

yjH(t(1− zj))

=
ℓ
∏

j=1

(

ϕX

(

yjH(t(1− zj))
)k

, (3.9)
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where we used that {Yj} and {ηj} are independent of {Xi,j}. Hence, by (3.9)

E

(

e−
∑k

i=1

∑ℓ
j=1 YjXi,jH(t(1−ηj ))

)

= E

(

ℓ
∏

j=1

(

ϕX

(

YjH(t(1− ηj))
)k

)

=
ℓ
∏

j=1

E

(

(

ϕX

(

YjH(t(1− ηj))
)k
)

=

[

E

(

(

ϕX

(

Y1H(t(1− η1))
)k
)]ℓ

=

[∫

R

∫ 1

0

(

ϕX

(

yH(tz))
)k

dzFY (dy)

]ℓ

where the second equality follows from (3.9) and the last equality is due to the fact that
1− η is uniformly distributed on [0, 1]. Finally, using the above results together with (3.8)
and the definition of G(t, k) in (3.4) and (3.6) we get

G(t, k) = E

(

e−
∑k

i=1

∫ t
0 λs,ids

)

=
∞
∑

ℓ=0

E

(

e−
∑k

i=1

∫ t
0 λs,ids

∣

∣

∣
Mt = ℓ

)

Q (Mt = ℓ)

=

∞
∑

ℓ=0

e−ρt (ρt)
ℓ

ℓ!
e−kλ0H(t)

[
∫

R

∫ 1

0

(

ϕX

(

yH(tz)
))k

dzFY (dy)

]ℓ

= e−ρt−kλ0H(t) · exp

(

ρt

∫

R

∫ 1

0

(

ϕX

(

yH(tz)
))k

dzFY (dy)

)

which concludes the proposition.
�

As already mentioned, the quantity Q (Nt = k) is central for pricing portfolio credit
derivatives, and the fact that we are able to derive Q (Nt = k) explicitly up to the quan-

tity
∫ ∫ 1

0
(ϕX

(

yH(tz)
)

)kdzFY (dy) is remarkable. Depending on ϕX this quantity can be
computed explicitly. However, in the following section we show that also the numerical
computation of this quantity is very feasible.

4. An explicit example

In this section we give an tractable and explicit example of the model presented in (2.1)
under the assumption (3.2). To be more specific, we assume that

Y ∈ {y1, y2} where Q (Y = y1) = q and X ∼ χ2(2) (4.1)
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where y1, y2 ≥ 0. Hence, Y is a two-point distributed random variable and X has chi-
squared distribution with 2 degrees of freedom. This result can be generalized in a number
of ways. First, Y could have a finite number of states. Second, any distribution for X with
has an closed form expression for its Laplace transform still leads to tractable formulas.
We chose the stated formulation for simplicity and it is remarkable that it provides a good
fit in our numerical examples. We can now state the following lemma,

Lemma 4.1. Under (3.2) and (4.1) we have that

G(t, k) = exp
(

− kλ0H(t) + ρt [qI(y1, k, t) + (1− q)I(y2, k, t)− 1]
)

(4.2)

where

I(y, k, t) :=

∫ 1

0

1

(1 + 2yδ−1 (1− e−δtz))k
dz. (4.3)

Proof. Recall that if X ∼ χ2(2) then ϕX(s) = (1 + 2s)−1 and since H(x) = δ−1
(

1− e−δx
)

we have

ϕX (yH(tz)) =
1

1 + 2yδ−1 (1− e−δtz)
. (4.4)

Since Y is a two-point distributed random variable where Y ∈ {y1, y2} and Q (Y = y1) = q

we get
∫

R

∫ 1

0

(

ϕX

(

yH(tz)
)

)k

dzFY (dy) = qI(y1, k, t) + (1− q)I(y2, k, t) (4.5)

where we define I(y, k, t) as

I(y, k, t) :=

∫ 1

0

1

(1 + 2yδ−1 (1− e−δtz))k
dz.

Finally, plugging (4.5) into (3.5) in Proposition 3.2 yields (4.2). �

It is possible to obtain analytical expressions for the integrals I(y, k, t), however as k

increases these become quite long and tedious. In practice we evaluate I(y, k, t) using
numerical quadrature. However, for k = 1, we can simplify (4.2) as stated in the following
lemma.

Lemma 4.2. Under (3.2) and (4.1) we have that

Q (τi > t) = e−λ0H(t)+ct
[

1 + 2y1δ
−1(1− e−δt)

]
ρq

δ+2y1
[

1 + 2y2δ
−1(1− e−δt)

]

ρ(1−q)
δ+2y2 (4.6)

where c is given by

c = ρ

(

q

1 + 2y1δ−1
+

1− q

1 + 2y2δ−1
− 1

)

.

Proof. From (2.2) and (3.4) we get

Q (τi > t) = E

(

exp

(

−

∫ t

0

λs,ids

))

= G(t, 1)
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and by Lemma 4.1 with k = 1 we have

G(t, 1) = e−λ0H(t) exp (ρt [qI(y1, 1, t) + (1− q)I(y2, 1, t)− 1]) (4.7)

where I(y, 1, t) is given by (4.3) with k = 1 viz.

I(y, 1, t) :=

∫ 1

0

1

1 + 2yδ−1 (1− e−δtz)
dz. (4.8)

Furthermore, note that (see e.g. p.171 in R̊ade & Westergren (1995) )
∫

1

b+ ceaz
dz =

z

b
−

1

ab
ln |b+ ceaz|

and this observation with (4.8) yield

I(y, 1, t) =
1

1 + 2yδ−1
+

1

t(δ + 2y)
ln
[

1 + 2yδ−1(1− e−δt)
]

. (4.9)

Next, some calculations renders

ρt
(

qI(y1, 1, t) + (1− q)I(y2, 1, t)− 1
)

= ρt

(

q

1 + 2y1δ−1
+

1− q

1 + 2y2δ−1
− 1

)

+
ρq

δ + 2y1
ln
[

1 + 2y1δ
−1(1− e−δt)

]

+
ρ(1− q)

δ + 2y2
ln
[

1 + 2y2δ
−1(1− e−δt)

]

and plugging this into (4.7) yields (4.6). �

It is straightforward to generalize Lemma 4.1 and Lemma 4.2 to the following setup

Corollary 4.3. Assume that

Y ∈ {y1, y2, . . . , yM} where Q (Y = yj) = qj and X ∼ χ2(2) (4.10)

and yj ≥ 0 for each j = 1, . . . ,M . Then under (3.2) it holds that

G(t, k) = exp

(

−kλ0H(t) + ρt

[

M
∑

j=1

qjI(yj, k, t)− 1

])

with I(y, k, t) defined by (4.3). Furthermore,

Q (τi > t) = e−λ0H(t)+ct

M
∏

j=1

[

1 + 2yjδ
−1(1− e−δt)

]

ρqj
δ+2yj

where c is given by

c = ρ

(

M
∑

j=1

qj

1 + 2yjδ−1
− 1

)

.
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5. Pricing CDS and basket default swaps

In this section we give a short description of the single-name CDS spread and kth-to
default swaps. We will focus on a homogeneous portfolio described by the model (2.1)
with condition (3.2). First, Subsection 5.1 presents formulas for the single-name CDS
spread in this model. Then, Subsection 5.2 outlines the kth-to-default swap. In the sequel
all computations are assumed to be made under a risk-neutral martingale measure Q.
Typically such a Q exists if we rule out arbitrage opportunities. Further, we assume the
that risk-free interest rate is a deterministic constant given by r.

5.1. Pricing the single-name CDS. In this subsection we give a short description of a
single-name credit default swap, which is one of our calibration instruments.

Consider a obligor C with default time τ and recovery rate R. A single-name credit
default swap (CDS) with maturity T where the reference entity is obligor C, is a bilateral
contract between two counterparties, A and B, where B promises to pay A the credit
losses (1−R) at τ if the obligor defaults before time T . As compensation for this, A pays
S∆ to the protection seller B, at 0 < t1 < t2 < . . . < tN = T or until τ < T . We assume
that the payment dates are equidistant, i.e. ∆ = tn − tn−1 for any n. The CDS spread S is
determined so that expected discounted cashflows between A and B are equal when the
CDS contract is settled at t = 0. Assuming a constant interest rate r and deterministic
recovery rate implies that S is given by

S =
(1−R)

∫ T

0
e−rsdF (s)

∆
∑nT

n=1 e
−rtn(1− F (tn))

where F (t) = Q (τ ≤ t) is the distribution functions of the default time for the obligor C.
In practice, if τ ∈ [tn, tn+1], then A will also pay B the accrued default premium up to

τ , see e.g. in Herbertsson & Rootzén (2008). In this paper we have ignored the accrued
payments in our model of the CDS spread. The effect of ignoring the accrued premium is
very small, see e.g. p.428 in McNeil et al. (2005).

5.2. Pricing kth-to-default swaps. A kth-to default swap is a generalization of a the
single-name credit default swap, to a portfolio of m obligors. It pays protection at the
kth default in the portfolio. To be more specific, consider a basket of m bonds each
with notional N , issued by m obligors with default times τ1, τ2, . . . , τm and recovery rates
R1, R2, . . . , Rm. Further, let T1 < . . . < Tm be the ordering of τ1, τ2, . . . , τm. A kth-to-
default swap with maturity T on this basket is a bilateral contract between two counter-
parties, A and B, where B promises A to pay the credit losses that B suffers at Tk if
Tk < T . Just as in the CDS, A pays be B a fee up to the default time Tk or until T ,
whichever comes first. The payments dates are identical to those in the CDS case and
the fee is S(k)∆ where ∆ is as previously tn − tn−1 and we assumed equidistant payment
dates. The main difference lies in the default payment at Tk. If Tk < T , B pays A

N(1 − Ri) if it was obligor i which defaulted at time Tk. However, in a homogeneous
portfolio R1 = R2 = . . . = Rm = R so the payment at Tk is always N(1 − R). The kth-
to-default spread S(k) is expressed in bp per annum and determined so that the expected
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discounted cash-flows between A and B coincide at t = 0. Assuming the same conditions
as in the CDS, we therefore have

S(k) =
(1−R)

∫ T

0
e−rsdFk(s)

∆
∑nT

n=1 e
−rtn(1− Fk(tn))

.

Here Fk (t) = Q (Tk ≤ t) is the distribution functions of the ordered default times. The
rest of the notation are the same as in the CDS contract. We also observe that 1 −
Fk(t) = Q (Tk > t) = Q (Nt < k), so the kth-to-default spread in a homogeneous model is
completely determined by the distribution for Nt. To be more specific, recall that

Q (Tk > t) = Q (Nt < k) =
k−1
∑

j=0

Q (Nt = j)

where Q (Nt = j) is computed by using Lemma 3.1. Furthermore, note that for k ≤ m− 1
we have

Q (Tk+1 > t) = Q (Tk > t) +Q (Nt = k)

which is useful from computational point of view when finding the survival distribution
Fk(t) for several k = 1, 2, . . . , ℓ where ℓ ≤ m.

6. Some numerical examples

In the following we illustrate the remarkable tractability of this simple model. It is easily
able to capture average CDS spreads of homogenous portfolios and the parameters give an
intuitive interpretation. We will in this section use the model (4.1) presented in Section 4.

Subsection 6.2 studies the kth-to default spreads as function of the average CDS spread
in the portfolio. Further, in Subsection 6.2 we investigate how the decay rate δ affect the
kth-to default spreads when keeping the CDS spread constant. In the sequel the interest
is set to 3%, the recovery is 40% and the maturity for the credit derivatives are 5 years
with quarterly payment frequency. Finally, we will in this section for simplicity set λ0 = 0
in all computations.

6.1. The kth-to-default spreads as function of the CDS spread. Consider a homo-
geneous portfolio with 10 obligors, satisfying the model specified in (2.1), (3.2) and (4.1).
We let the average CDS spread S vary between 50 bps to 300 bps in steps of 10 bps. We
calibrate the model CDS spread against each such spread S and then compute the kth-to
default swap for 1 ≤ k ≤ 7. For each fixed spread Sn say, the initial parameters are chosen
to be the calibrated parameters for the previous Sn−1. For the first spread , i.e. for S1,
the initial parameters are chosen to y1 = 0.009, y2 = 0.05, q = 0.55, ρ = 0.3 and δ = 0.75.
The results for the basket spreads are displayed in Figure 1 and 2. As expected, the kth-to
default swap spreads are increasing with S. Note that the curves turn from a concave to
a convex shape as k increases. Furthermore, in the calibrations the absolute error never
exceeds one thousand of a bp.
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Figure 1. The different kth-to-default spreads for k ≤ 4 as a function of the
CDS-spread. The portfolio consists of 10 obligors.
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Figure 2. The different kth-to-default spreads for 5 ≤ k ≤ 7 as a function of the
CDS-spread. The portfolio consists of 10 obligors.
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The calibrated “implied”parameters y1, y2, q, ρ, δ as function of the CDS spread are dis-
played in Figure 3, which also shows the implied five-year default probability as function of
the CDS spread. From this figure we conclude that the implied y1, y2 and ρ are increasing
with the CDS spread. This observation is intuitively clear from the model setup in (2.1).
Furthermore, q is also decreasing with an increasing CDS spread, although on a narrow
interval.
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Figure 3. The calibrated parameters and the implied five year default probability
as function of the CDS-spread.

6.2. The kth-to-default spreads as function of the decay rate δ. In this subsection
we investigate how the basket defaults spreads are affected by the decay rate δ in the model
given by (2.1) and (3.2).

We again consider a homogeneous portfolio with 10 obligors, satisfying (2.1) and (3.2).
The average CDS spread is 150 bps. We vary the decay rate δ between 0.5 to 28 in steps of
0.5. For each δ, the model is calibrated so that the CDS spread is maintained at 150 bps,
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and we then compute the kth-to-default swap for 1 ≤ k ≤ 7. Hence, in each calibration, δ
is fixed, and the rest of the parameters are found so that the model CDS spread will be 150
bp. For each fixed δn say, the initial parameters are chosen to be the calibrated parameters
for the previous ρn−1. For the first δ used, i.e. for δ1 = 0.5, the initial parameters are
chosen to y1 = 0.1, y2 = 0.3, q = 0.75, ρ = 0.04. In the calibration for each δ, the absolute
calibration error (i.e. model CDS spread minus market CDS spread) never exceeds one
thousand of a bp.
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Figure 4. The kth-to-default spreads for k ≤ 4 as function of the decay rate δ.
The CDS spread is 150 bps and the portfolio consists of 10 obligors.
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Figure 5. The kth-to-default spreads for 5 ≤ k ≤ 7 as function of the decay rate
δ. The CDS spread is 150 bps and the portfolio consists of 10 obligors.

From Figure 4 and Figure 5 we see that the kth-to- default swaps tend to converge to
constant for each k > 2 as δ increases.

Another interesting observation is that the calibrated parameters y1, y2, ρ all increase as
δ increase, see Figure 6. Intuitively this is clear, since as δ increase, the individual default
probability will decrease. Hence, since we are holding the CDS spread constant, some of
the parameters of y1, y2, ρ must increase in order to compensate for the “marginal”loss
effect on the default distribution for the obligor, as δ increase.
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Figure 6. The calibrated parameters as a function of the decay rate δ. The CDS
spread is 150 bps.
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