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Abstract

This paper considers the modelling of collateralized debt obligations (CDOs).
We propose a top-down model via forward rates generalizing Filipović, Over-
beck and Schmidt (2009) to the case where the forward rates are driven by
a finite dimensional Lévy process. The contribution of this work is twofold:
we provide conditions for absence of arbitrage in this generalized framework.
Furthermore, we study the relation to market models by embedding them in
the forward rate framework in spirit of Brace, Gatarek, and Musiela (1997).
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1 Introduction

A collateralized debt obligation (CDO) is a security backed by a pool of credit risky
securities. There are issued notes on so-called tranches of the CDO which are
characterized by different levels of credit riskiness or, in financial terms, seniorities.
In this work we consider a general model for the evolution of tranche prices similar
in spirit to the forward rate approach of Heath, Jarrow, and Morton (1992) and
derive conditions under which the model is free of arbitrage.

For practical applications, market models are of a high importance. In this
kind of models, traded securities have a finite set of maturities while in the forward
rate approach all possible maturities are considered. For the pricing of options
respectivly calibration of the model one imposes a simple dynamics for suitable
quantities and uses the conditions for absence of arbitrage which results in tractable
pricing formulas.

The main goal of this work is to provide conditions which guarantee the absence
of arbitrage in a general class of models and to study market models embedded
in this framework. The new contribution of this work is the following: first, we
consider models where the driving random process is a Lévy process, generalizing
Filipović, Overbeck, and Schmidt (2010). We derive general drift conditions which
ensure that the market is free of arbitrage. In a next step we consider market models
similar to those in Eberlein, Grbac, and Schmidt (2010). However, we embed the
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market models in the forward rate models and derive the resulting drift conditions.
The risk-free case studied in Brace, Gatarek, and Musiela (1997) turns out to be a
special case.

2 Collateralized Debt Obligations

Consider a complete filtered probability space (Ω,F , (Ft)t≥0,P) satisfying the usual
conditions. Mathematically speaking, a collateralized debt obligation is a derivative
on a portfolio of N credit risky securities. With each security there is an associated
nominal and we assume that the total nominal is one. Denote the process of ac-
cumulated losses over time by L = (Lt)t≥0. Then L is a pure-jump process which
jumps upward at defaults of the securities in the pool and the jump size is the
occurring loss. As the total nominal is one, Lt ∈ [0, 1] for all t ≥ 0. A special case,
quite often considered in practice, is when the loss on each default is a constant.
By I ⊂ [0, 1] we denote the set of attainable loss fractions and we assume that
I = [0, 1]. The case where I is finite may be considered analogously, see Filipović,
Overbeck, and Schmidt (2010).

Similar to Filipović, Overbeck, and Schmidt (2010) we consider (T, x)-bonds as
basic constituents: a (T, x)-bond pays 1{LT≤x} at maturity T , for x ∈ I. Its price
at time t is denoted by P (t, T, x). For x = 1 we obtain that P (t, T, 1) =: P (t, T )
equals the risk-free bond. In Eberlein, Grbac, and Schmidt (2010), Section 6.1, it
is shown how to extract (T, x)-bonds from observed CDO quotes under common
assumptions.

Pricing CDOs with (T,x)-bonds. We consider (T, x)-bonds as they are suf-
ficient to provide prices for CDOs and similar derivatives as we will show in this
section. First of all, (T, x)-bonds are sufficient for pricing European derivatives on
the loss process. Indeed, consider a payoff h(LT ) such that

h(LT ) = h(1)−
1∫

0

h′(y)1{LT≤y}dy.

Linearity of prices on contingent claims implies that the price at time t of the
derivative offering h(LT ) at T is given by the following functional of (T, x)-bonds

h(1)P (t, T )−
1∫

0

h′(y)P (t, T, y)dy.

A more general result holds true. Investing in CDOs is done via a so-called single-
tranche CDO (STCDO), sometimes also called tranche credit default swap. A
STCDO is represented by its lower and upper detachment points, x1 and x2, with
0 ≤ x1 < x2 ≤ 1. The investor receives coupon payments at times T1, . . . , Tn. In
exchange to this, the investor covers a certain part of the occurring losses in each
period. Set

H(x) := (x2 − x)+ − (x1 − x)+ =

∫
(x1,x2]

1{x≤y}dy.

Then, investing in the STCDO with swap rate S is equivalent to the following
payment stream:

1. Payment leg. The investor receives S H(LTi
) at times Ti, i = 1, . . . , n.
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2. Default leg. The investor pays −dH(Lt) = H(Lt−)−H(Lt) at any time where
∆Lt 6= 0.

In Filipović, Overbeck, and Schmidt (2010) it is shown that the value of the STCDO
at time t can be derived solely on the basis of (T, x)-bonds. In the case where risk-
free and risky (T, x)-bonds are independent, it follows from Lemma 4.1 therein that
the value of the STCDO at time t is given by

V (t, S) =

∫
(x1,x2]

(
S

n∑
i=1

P (t, Ti, y) + P (t, Tn, y)− P (t, T0, y)

+

Tn∫
T0

f(t, u)P (t, u, y)du

)
dy,

where f(t, u) denotes the risk-free forward rate. Setting V = 0 and solving for S
gives the par-spread for this investment. Market prices of STCDOs are typically
quoted via the par-spread.

3 Arbitrage-free term structure movements

In this article we consider term structure movements of (T, x)-bonds given by

P (t, T, x) = 1{Lt≤x} exp
(
−

T∫
t

f(t, u, x)du
)
, (1)

where f(t, T, x) is the (T, x)-forward rate prevailing at t. Let us assume that

(A1) Lt =
∑
s≤t ∆Ls is càdlàg, non-decreasing, adapted, pure jump process, which

admits an absolutely continuous compensator νL(t, dx)dt satisfying
∫ t

0
νL(s, I)ds <

∞ (finite activity).

As shown in Filipović, Overbeck, and Schmidt (2010), under (A1), the indicator
process (1{Lt≤x})t≥0 is cádlág and has intensity

λ(t, x) = νL(t, (x− Lt, 1]). (2)

That is,

Mx
t = 1{Lt≤x} +

t∫
0

1{Ls≤x}λ(s, x) ds (3)

is a martingale. Moreover, λ(t, x) is decreasing and continuous in x with λ(t, 1) = 0.
Consider a d-dimensional Lévy process Z. Denote by 〈·, ·〉 the scalar product in

Rd, by ·> the transpose and by | · | the respective norm on Rd. It is well-known that
a Lévy-process can be decomposed as

Zt = mt+Wt +

t∫
0

∫
|z|≤1

z (µ(ds, dz)− ν(dz)ds) +

t∫
0

∫
|z|>1

z µ(ds, dz), (4)

where m ∈ Rd, W is a d-dimensional Wiener process with covariance matrix Σ and
µ is the random measure of jumps with its P-compensator ν(dz)ds. That is, for any
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Borel set B of R+ and any Borel set Λ of Rd, µ denotes the number of jumps in the
time interval B which have sizes in Λ,

µ(ω;B,Λ) =
∑
s∈B

1Λ(∆Zs).

The process Z has exponential moments if the Laplace transform is always finite.
Then the Laplace transform satisfies E( e−〈u,Zt〉) = etJ(u) for all u ∈ Rd with

J(u) = −〈m,u〉+
1

2
〈Σu, u〉+

∫
Rd

(
e−〈u,z〉 − 1 + 1{|z|≤1}(z) 〈u, z〉

)
ν(dz). (5)

We assume throughout that the (T, x)-forward rate is given by

f(t, T, x) = f(0, T, x) +

t∫
0

a(s, T, x)ds+

t∫
0

〈b(s, T, x), dZs〉

+

t∫
0

∫
I

c(s, T, x; y)µL(ds, dy)

(6)

where µL is the random measure associated to the jumps of L. By [L,Z] we denote
the covariation of L and Z. Let

B :=
{
u ∈ Rd :

∫
|z|>1

e−〈u,z〉ν(dz) <∞
}
.

Additionally, we use the following assumptions.

(A2) For each T, x the processes a, b, and c are assumed to be predictable and have
bounded trajectories. Furthermore, c(·, T, 1; y) = 0 for all y ∈ I.

(A3) [L,Z]t = 0 for all t ≥ 0.

(A4) For any r > 0 the function u 7→
∫
|z|>1

e−〈u,z〉ν(dz) is bounded on {u ∈ Rd :

|u| ≤ r} ∩B.

(A5) For each (T, x) there exists K(T, x) such that

sup
0≤s≤T,y∈Rd

c(s, T, x; y) ≤ K(T, x).

The assumption on c in (A2) states that losses in the considered portfolio do not
influence the risk-free rate. This assumption can be relaxed but at the cost of further
notation. Assumption (A3) is natural from a modelling point of view: jumps in L
influence f only through c and not via a dependence of L and Z.

Contagion. This framework allows for two kinds of contagion, i.e. feedback of the
loss process L on the forward rates: first, a direct contagion via simultaneous jumps
of L and f ; when ∆Lt 6= 0, (A3) gives that ∆f(t, T, x) = c(t, T, x; ∆Lt). Second, a
kind of indirect contagion via letting the model parameters a, b, and c be explicit
functions of the loss path L.

It is well-known that then the market of (T, x)-bonds is free of arbitrage if

(DtP (t, T, x))0≤t≤T are local martingales for all (T, x), (7)

where D is the discounting process given by

Dt = e−
∫ t
0
rsds = e−

∫ t
0
f(s,s,1)ds.

The goal of this section is to give conditions which are sufficient for (7) to hold.
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Default-free market. The default-free forward rate, f(t, T ), is given by

f(t, T ) = f(t, T, 1).

We also denote a(t, T ) = a(t, T, 1) and b(t, T ) = b(t, T, 1). In the case of default
free markets, the following was shown in Jakubowski and Zabczyk (2007), Theorem
3.1.
On one side, (A2) and the no-arbitrage condition

DtP (t, T ) are local martingales for all 0 ≤ t ≤ T ; (8)

imply that for any u ≤ T
u∫
t

b(t, v)dv ∈ B for almost all t ∈ [0, u]. (9)

On the other side, if (A2), (A3) and (9) hold, then (8) is equivalent to

s∫
t

a(t, u)du = J
( s∫
t

b(t, u)du
)

(10)

for almost all 0 ≤ t ≤ s ≤ T .

The drift conditions. Now we are in the position to state the model for the
defaultable market and derive the drift conditions. Recall that we consider a market
consisting of (T, x)-bonds.

Theorem 3.1. Assume that (A1)-(A4) hold.

(i) If (A5) holds, it follows from (7) that

s∫
t

b(t, v, x)dv ∈ B (11)

for any 0 ≤ t ≤ s on {Lt ≤ x}, Q⊗ dt-a.s.

(ii) If (11) holds, then (7) is equivalent to

s∫
t

a(t, u, x)du = J

( s∫
t

b(t, u, x)du

)

+

∫
I

(
e−

∫ s
t
c(t,u,x;y) du − 1

)
1{Lt+y≤x}ν

L(t, dy) (12)

f(t, t, x) = f(t, t) + λ(t, x) (13)

for any 0 ≤ t ≤ s, where (12) and (13) hold on {Lt ≤ x}, Q⊗ dt-a.s.

Proof. Set

p(t, T, x) := exp

(
−

T∫
t

f(t, u, x) du

)
,
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such that P (t, T, x) = 1{Lt≤x}p(t, T, x). Recall the martingale Mx from (3). Then

d
(
DtP (t, T, x)

)
= Dtp(t−, T, x)dMx

t −Dtp(t−, T, x)λ(t, x)1{Lt≤x} dt

+ 1{Lt−≤x}d(Dtp(t, T, x)) + d[1{Lt≤x}, Dtp(t, T, x)]. (14)

Denote a∗(t, T, x) :=
∫ T
t
a(t, u, x)du, b∗(t, T, x) :=

∫ T
t
b(t, u, x)du, and similarly

c∗(t, T, x; y) :=
∫ T
t
c(t, u, x; y)du. We first compute the last term in (14). Note that

the process (1{Lt≤x})t≥0 jumps at most once, from 1 to 0, at the first time when L
crosses the barrier x. Hence,

[1{L·≤x}, D·p(·, T, x)]t =
∑

0≤s≤t

∆1{Ls≤x}∆(Dsp(s, T, x))

= −
∑

0≤s≤t

1{Ls−≤x,Ls>x}∆(Dsp(s, T, x))

= −
t∫

0

∫
I

1{Ls−≤x}Dsp(s−, T, x)1{Ls−+y>x}

(
e−c

∗(s,T,x;y) − 1
)
µL(ds, dy),

(15)

where we used in the last step that by (A3), Z and L do not have simultaneous
jumps. Regarding the remaining term in (14), we obtain from (1) and (6), by the
Itô -formula, that

1{Lt−≤x}d
(
Dtp(t, T, x)

)
= Dtp(t−, T, x)1{Lt−≤x}((
f(t, t, x)− rt − 〈b∗(t, T, x),m〉 − a∗(t, T, x)

)
dt

+
1

2
b∗(t, T, x)> Σ b∗(t, T, x)dt

+

∫
Rd

[
e−b

∗(t,T,x)>z − 1 + b∗(t, T, x)>z
]
1{|z|≤1} µ(dt, dz)

+

∫
Rd

[
e−b

∗(t,T,x)>z − 1
]
1{|z|>1} µ(dt, dz)

+

∫
I

1{Lt−≤x}

[
e−c

∗(t,T,x;y) − 1
]
µL(dt, dy)

)
+ dM̃t (16)

where M̃ is a local martingale and we used the decomposition (4). Inserting (15)
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and (16) in (14) we obtain, using 1{Lt−≤x}p(t−, T, x) = P (t−, T, x), that

d
(
DtP (t, T, x)

)
= DtP (t−, T, x)(
dMx

t − λ(t, x)1{Lt≤x} dt(
f(t, t, x)− rt − 〈b∗(t, T, x),m〉 − a∗(t, T, x)

)
dt

+
1

2
b∗(t, T, x)>Σ b∗(t, T, x)dt

+

∫
Rd

[
e−b

∗(t,T,x)>z − 1 + b∗(t, T, x)>z
]
1{|z|≤1} µ(dt, dz)

+

∫
Rd

[
e−b

∗(t,T,x)>z − 1
]
1{|z|>1} µ(dt, dz)

+

∫
I

1{Lt−+y≤x}

(
e−c

∗(t,T,x;y) − 1
)
µL(dt, dy)

)
+ d ˜̃Mt (17)

with a local martingale ˜̃M . First we study (i). From (17) we obtain that

DtP (t, T, x) = D0P (0, T, x) +A(t) +
˜̃̃
M t

+

t∫
0

∫
Rd

DsP (s−, T, x)
(
e−b

∗(s,T,x)>z − 1 + b∗(s, T, x)>z
)

1{|z|≤1} µ(ds, dz)

+

t∫
0

∫
Rd

DsP (s−, T, x)
(
e−b

∗(s,T,x)>z
)

1{|z|>1} µ(ds, dz)

−
t∫

0

∫
Rd

DsP (s−, T, x)1{|z|>1} µ(ds, dz)

+

t∫
0

∫
I

DsP (s−, T, x)1{Ls−+y≤x}

(
e−c

∗(s,T,x;y) − 1
)
µL(ds, dy)

)

=: D0P (0, T, x) +A(t) +
˜̃̃
M t + I1(t) + I2(t)− I3(t) + I4(t). (18)

Here
˜̃̃
M t is a local martingale and A(t) is a dt integral and thus they both are

locally integrable processes. The no-arbitrage condition (7) implies that the sum of
all those six processes is a local martingale and in particular the sum

I1(t) + I2(t)− I3(t) + I4(t)

is locally integrable. We consider each term separately. Since (DtP (t, T, x))0≤t≤T
is a nonnegative local martingale, it is a supermartingale and hence

sup
0≤s≤T

E(DsP (s−, T, x)) ≤ sup
0≤s≤T

E(DsP (s, T, x)) ≤ E(D0P (0, T, x)) <∞ (19)

the last expectation being finite by (7). The process

I3(t) :=

t∫
0

∫
Rd

DsP (s−, T, x)1{|z|>1} µ(ds, dz)
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is locally integrable. To see this let (τn) be an increasing sequence of stopping times
dominated by T . Then

E
( τn∫

0

∫
Rd

DsP (s−, T, x)1{|z|>1}µ(ds, dz)

)
(20)

≤ E

 T∫
0

∫
Rd

DsP (s−, T, x)1{|z|>1} µ(ds, dz)


=

T∫
0

∫
Rd

E (DsP (s−, T, x)) 1{|z|>1}ν(dz)ds.

Since the integrands are nonnegative, we obtain with (19) that

E
( τn∫

0

∫
Rd

DsP (s−, T, x)1{|z|>1}µ(ds, dz)

)
≤ TE(D0P (0, T, x))ν({z ∈ Rd : |z| > 1}) <∞.

Next, we consider I4. By (A5)∣∣∣e−c∗(s,T,x;y) − 1
∣∣∣ ≤ eTK(T,x) + 1 =: K̃(T, x)

and hence

E

 τn∫
0

∫
Rd

D(s)P (s−, T, x)1{Ls−+y≤x}

∣∣∣e−c∗(s,T,x;y) − 1
∣∣∣µL(ds, dy)


≤ K̃(T, x)E

 T∫
0

∫
Rd

1[0,τn](s)D(s)P (s−, T, x)1{Ls−+y≤x}µ
L(ds, dy)


≤ K̃(T, x)

T∫
0

∫
Rd

E (D(s)P (s−, T, x)) νL(s, dy),

which is finite by (19), (A1) and the second part in (A5). Summarizing, the no-
arbitrage condition (7) implies that the sum I1 + I2 is locally integrable. However

I1 + I2 =

t∫
0

∫
Rd

(
e−b

∗(s,T,x)>z − 1 + b∗(s, T, x)>z
)

1{|z|≤1} µ(ds, dz)

+

t∫
0

∫
Rd

e−b
∗(s,T,x)>z1{|z|>1} µ(ds, dz).

Since both integrands are nonnegative, this sum is locally integrable if and only if

both summands are locally integrable and so
∫ t

0

∫
Rd e

−b∗(s,T,x)>z1{|z|>1} µ(ds, dz) is
locally integrable. Therefore, for a localizing sequence τn

E
T∫

0

∫
Rd

e−b
∗(s,T,x)>z1{s≤τn}1{|z|>1}µ(ds, dz) < +∞.
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Equivalently

E
[ τn∫

0

( ∫
|z|>1

e−b
∗(s,T,x)>zν(dz)

)
ds
]
< +∞.

This implies (11) and assertion (i) follows.
We consider now (ii). Note that Dtp(t−, T, x) > 0. Compensating in (16) the

integrals with respect to the random measures µ and µL, collecting the ’dt’-terms
and dividing by Dtp(t−, T, x) > 0 gives

1{Lt≤x}

[
f(t, t, x)− rt − λ(t, x)− 〈b∗(t, T, x),m〉 − a∗(t, T, x)

+
1

2
b∗(t, T, x)>Σ b∗(t, T, x)

+

∫
Rd

[
e−b

∗(t,T,x)>z − 1 + 1{|z|≤1}b
∗(t, T, x)>z

]
ν(dz)

+

∫
I

1{Lt+y≤x}

(
e−c

∗(t,T,x;y) − 1
)
νL(t, dy)

]
dt. (21)

Dp being a local martingale is equivalent to having a vanishing drift. From (21) we
obtain the following condition:

0 = f(t, t, x)− rt − λ(t, x)− a∗(t, T, x) + J(b∗(t, T, x))

+

∫
I

(
e−c

∗(t,T,x;y) − 1
)

1{Lt+y≤x} ν
L(t, dy), (22)

dt ⊗ Q-almost surely for all T ≥ t. Let N ∈ B(R+) ⊗ F be the set of all (t, ω)
for which (22) holds. For (t, ω) ∈ N we choose T = t and hence obtain (13) as
J(0) = 0. The remaining terms give (12), where both equations hold only on N ,
i.e. dt⊗Q-almost surely.

For the converse, we need to show that the drift conditions imply that all dis-
counted (T, x)-bonds are local martingales. For fixed x, the drift conditions imply
that the ’dt’-terms in (17) vanish (compare (21)) and hence (DtP (t, T, x))0≤t≤T are
local martingales. The conclusion follows. �

Theorem 3.1 states that, under the no-arbitrage condition (7), the drift a(t, ·, x)
of the forward rates is determined by the volatility b(t, ·, x) and the contagion
c(t, ·, x; ·). Besides this, (12) gives an implicit relation between f(t, t, x) and Lt
or more precisely its compensator; the relationship between λ and the compensator
ν is given in (2).

In Filipović, Overbeck, and Schmidt (2010) it is shown how to construct a
conditional Markov process which satisfies the drift conditions when the filtration
is generated by a Brownian motion. The extension to the case where the background
filtration is generated by a Lévy process is studied in Schmidt and Tappe (2010).

There is a rich literature on drift conditions in the defaultable and default-free
case, see for example Björk, Di Masi, Kabanov, and Runggaldier (1997), Musiela
and Rutkowski (1997), Filipović (2001), Schmidt (2006), Özkan and Schmidt (2005)
and Huehne (2007).

4 Market Models

For practical applications it is important to realize, that (T, x)-bond prices are
neither available for all maturities nor for all levels x. This chapter is devoted to
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the study of a market model where this assumption is relaxed. We start by deriving
dynamics of (Tk, xi)-rates in section 4.1, and consider market models of the forward
rate and the (Tk, xi)-rate in sections 4.2 and 4.3, respectively. The drift condition
derived in Theorem 3.1 is, however, still sufficient for absence of arbitrage. Recall
that (Lt)t≥0 was the loss process of the CDO and P (t, T, x) = 1{Lt≤x}p(t, T, x) with
p(t, T, x) > 0.

We fix a tenor structure 0 < T1 < · · · < Tn and a barrier structure 0 = x1 <
· · · < xm = 1. Set S := {T1, . . . , Tn}× {x0, . . . , xm}. The considered market model
consists of all (T, x)-bonds with (T, x) ∈ S. As xm = 1, the market also contains
risk-free bonds. Throughout we assume that the initial term structure, denoted in
(T, x)-bonds, is strictly positive and decreasing in T and increasing in x.

Definition 4.1. Set δk := Tk+1 − Tk. The rate

L(t, Tk, xi) := 1{Lt≤xi}
1

δk

(
p(t, Tk, xi)

p(t, Tk+1, xi)
− 1

)
is called (Tk, xi)-rate. For all 0 ≤ t ≤ S ≤ T and x ∈ I,

F (t, S, T, x) := 1{Lt≤x}
p(t, S, x)

p(t, T, x)
(23)

defines the (S, T, x)-forward bond price.

The (Tk, 1)-rate is the so-called LIBOR-rate. It is a default-free and has been
studied in many papers, see e.g. Filipović (2009). Defaultable LIBOR-rates have
been studied in Eberlein, Kluge, and Schönbucher (2006). In this paper we follow
Brace, Gatarek, and Musiela (1997) and embed the (Tk, xi)-rates in the framework
of continuous forward rates and obtain sufficient conditions for absence of arbitrage.
In Eberlein, Grbac, and Schmidt (2010) (Tk, x)-rates are studied directly; however
they do not consider a discrete structure for the loss levels.

4.1 Dynamics of (Tk, xi)-rates

In this section we derive the dynamics of (Tk, xi)-rates when the drift condition (12)
is satisfied. This result generalizes Eberlein and Özkan (2005) and Huehne (2007).

Recall that b∗(t, T, x) =
∫ T
t
b(t, u, x)du.

Theorem 4.2. Assume that (A1)-(A4) and (12) hold and consider (Tk, xi) ∈ S.
On {Lt− ≤ xi} we have that

dL(t, Tk, xi) =
1 + δkL(t−, Tk, xi)

δk

(
D(t, Tk, Tk+1, xi)−

δkL(t−, Tk, xi)
1 + δkL(t−, Tk, xi)

λ(t, xi)

)
dt

+ dM̃t, (24)

where the drift term attributed to the compensated jumps and the quadratic variation
of the diffusive part is

D(t, Tk, Tk+1, xi)

:=

∫
Rd

(
e〈b
∗(t,Tk+1,xi)−b∗(t,Tk,xi),z〉 − e−〈b

∗(t,Tk,xi),z〉 + e−〈b
∗(t,Tk+1,xi),z〉 − 1

)
ν(dz)

+

∫
I

(
ec
∗(t,Tk+1,xi;y)−c∗(t,Tk,xi;y) − e−c

∗(t,Tk,xi;y) + e−c
∗(t,Tk+1,xi;y)

)
1{Lt+y≤xi}ν

L(t, dy)

+ 〈Σ(b∗(t, Tk+1, xi)− b∗(t, Tk, xi)), b∗(t, Tk+1, xi)〉 (25)
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and M̃ = M̃(Tk, xi) is the local martingale

dM̃t := L(t−, Tk, xi)dMx
t

+
1 + δkL(t−, Tk, xi)

δk

(∫
Rd

(
e〈b
∗(t,Tk+1,xi)−b∗(t,Tk,xi),z〉 − 1

)
(µ(ds, dz)− ν(dz)ds)

+

∫
I

(
ec
∗(t,Tk+1,xi;y)−c∗(t,Tk,xi;y) − 1

)
1{Lt−+y≤xi}(µ

L(ds, dy)− νL(dy)ds)

+ 〈b∗(t, Tk+1, xi)− b∗(t, Tk, xi), dW (t)〉

)
. (26)

Proof. Fix 0 < S < T . First, we derive the dynamics of the pre-default (S, T, x)-
forward bond price process

g(t, S, T, x) :=
p(t, S, x)

p(t, T, x)
. (27)

With x, S and T fixed we denote A(t) :=
∫ T
S
a(t, u, x)du, B(t) :=

∫ T
S
b(t, u, x)du,

and C(t; y) :=
∫ T
S
c(t, u, x; y)du . By (27) and the dynamics of the forward rate f

given in (6), the stochastic Fubini theorem yields

g(t, S, T, x) = e
∫ T
S (f(0,u,x)+

∫ t
0
a(s,u,x)ds+

∫ t
0
〈b(s,u,x),dZs〉+

∫ t
0

∫
I c(s,u,x;y)µL(ds,dy))du

= g(0, S, T, x) e
∫ t
0
A(s)ds+

∫ t
0
〈B(s),dZ(s)〉+

∫ t
0

∫
I C(s;y)µL(ds,dy).

The Itô-formula gives an expression for the dynamics of g:

dg(t, S, T, x) = g(t−, S, T, x)
(
A(t) + 〈B(t), dZ(t)〉

)
dt

+
1

2
g(t−, S, T, x)〈ΣB(t), B(t)〉dt

+
(
g(t, S, T, x)− g(t−, S, T, x)− g(t−, S, T, x)〈B(t),∆Z(t)〉

)
=: dI1(t) + dI2(t) + dI3(t). (28)

The decomposition of Z in (4) yields

dI1(t) = g(t−, S, T, x) (A(t) + 〈B(t),m〉) dt

+ g(t−, S, T, x)〈B(t), dW (t)〉

+

∫
‖z‖≤1

g(t−, S, T, x)〈B(t), z〉(µ(dt, dz)− ν(dz)dt)

+

∫
‖z‖>1

g(t−, S, T, x)〈B(t), z〉µ(dt, dz).

By (A3), L and Z have no joint jumps and therefore

dI3(t) = g(t−, S, T, x)
(
e〈B(t),∆Z(t)〉+C(t,∆L(t)) − 1

)
− g(t−, S, T, x)〈B(t),∆Z(t)〉

=

∫
Rd

g(t−, S, T, x)
(
e〈B(t),z〉 − 1− 〈B(t), z〉

)
µ(dt, dz)

+

∫
I

g(t−, S, T, x)
(
eC(t;y) − 1

)
µL(dt, dy),

11



Inserting this expressions in (28) we obtain

dg(t, S, T, x)

g(t−, S, T, x)
=

(
A(t) + 〈B(t),m〉+

1

2
〈ΣB(t), B(t)〉

)
dt+ 〈B(t), dW (t)〉

+

∫
Rd

(
e〈B(t),z〉 − 1

)
(µ(dt, dz)− ν(dz)dt)

+

∫
Rd

(
e〈B(t),z〉 − 1− 1{‖z‖≤1}〈B(t), z〉

)
ν(dz)dt (29)

+

∫
I

(
eC(t;y) − 1

)
µL(dt, dy). (30)

As L(t, Tk, x) = 1{Lt≤x}δ
−1
k (g(t, Tk, Tk+1, x)− 1), we have that

dL(t, Tk, x) = δ−1
k (g(t−, Tk, Tk+1, x)− 1)d1{Lt≤x}

+ 1{Lt−≤x}δ
−1
k dg(t, Tk, Tk+1, x)

+ d[1{Lt≤x}, δ
−1
k (g(t, Tk, Tk+1, x)− 1)].

Note that d1{Lt≤x} = dMx
t − 1{Lt≤x}λ(t, x)dt and, similar to (15),

d[1{Lt≤x}, δ
−1
k (g(t, Tk, Tk+1, x)− 1)]

= δ−1
k

∫
I

(
1{Lt−+y≤x} − 1{Lt−≤x}

)
g(t−, Tk, Tk+1, x)

(
eC(t,Tk,Tk+1;y) − 1

)
µL(dt, dy).

Summarizing, we obtain the following dynamics of L,

dL(t, Tk, x) = L(t−, Tk, x)
(
dMx

t − λ(t, x)dt
)

+ 1{Lt−≤x}
δkL(t−, Tk, x) + 1

δk

[(
A(t) + 〈B(t),m〉+

1

2
〈ΣB(t), B(t)〉

+

∫
Rd

(
e〈B(t),z〉 − 1− 1{‖z‖≤1}〈B(t), z〉

)
ν(dz)

)
dt

+ 〈B(t), dW (t)〉+

∫
Rd

(
e〈B(t),z〉 − 1

)
(µ(dt, dz)− ν(dz)dt)

+

∫
I

(
eC(t;y) − 1

)
µL(dy, dt)

+

∫
I

(
1{Lt−+y≤x} − 1{Lt−≤x}

) (
eC(t;y) − 1

)
µL(dt, dy)

]
. (31)

Compensating the remaining µL terms and collection all ds-terms and using (5)
gives the drift term of L,

− L(t−, Tk, x)λ(t, x) (32)

+ 1{Lt−≤x}
δkL(t−, Tk, x) + 1

δk

[
A(t) + J(−B(t)) +

∫
I

(
eC(t;y) − 1

)
1{Lt+y≤x}ν

L(t, dy)

]
.

In the next step we will use the drift condition (12) to work further on this expres-
sion. Recall that

B(t) =

T∫
S

b(t, u, x)du = b∗(t, T, x)− b∗(t, S, x),
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such that (5) gives

J(−B(t)) = −〈m, b∗(t, S, x)〉+ 〈m, b∗(t, T, x)〉

+
1

2
〈Σ(b∗(t, T, x)− b∗(t, S, x)), (b∗(t, S, x)− b∗(t, T, x))〉

+

∫
Rd

(
e−〈b

∗(t,S,x)−b∗(t,T,x),z〉 − 1 + 1{‖z‖≤1}〈b∗(t, S, x)− b∗(t, T, x), z〉
)
ν(dz)

= J
(
b∗(t, S, x)

)
− J

(
b∗(t, T, x)

)
+ 〈Σ(b∗(t, T, x)− b∗(t, S, x)), b∗(t, T, x)〉

+

∫
Rd

(
e−〈b

∗(t,S,x)−b∗(t,T,x),z〉 − e−〈b
∗(t,S,x),z〉 + e−〈b

∗(t,T,x),z〉 − 1
)
ν(dz)

With A(t) = a∗(t, T, x)− a∗(t, S, x) the drift condition (12) gives

A(t) = J(b∗(t, T, x))− J(b∗(t, S, x))

+

∫
I

(
e−c

∗(t,T,x;y) − e−c
∗(t,S,x;y)

)
1{Lt+y≤x}ν

L(t, dy).

Hence,

A(t) + J(−B(t)) +

∫
I

(
eC(s;y) − 1

)
1{Lt+y≤x}ν

L(t, dy)

= 〈Σ(b∗(t, T, x)− b∗(t, S, x)), b∗(t, T, x)〉

+

∫
Rd

(
e〈b
∗(t,T,x)−b∗(t,S,x),z〉 − e−〈b

∗(t,S,x),z〉 + e−〈b
∗(t,T,x),z〉 − 1

)
ν(dz)

+

∫
I

(
ec
∗(t,T,x;y)−c∗(t,S,x;y) − e−c

∗(t,S,x;y) + e−c
∗(t,T,x;y)

)
1{Lt+y≤x}ν

L(t, dy).

(33)

Inserting this in (32) and using the dynamics of L in (31) we obtain the result. �

As byproduct of the above proof we obtain the dynamics of the (S, T, x)-forward
rate.

Corollary 4.3. Assume (A1)-(A4) and (12) holds and (Tk, xi) ∈ S with k < n.
Then, on {Lt−≤xi},

dF (t, Tk, Tk+1, xi)

F (t−, Tk, Tk+1, xi)
=
(
− λ(t, xi) +D(t, Tk, Tk+1, xi)

)
dt+ d ˜̃Mt (34)

with D from (25) and the local martingale ˜̃M given in (35).

Proof. Noting that F (t, Tk, Tk+1, xi) = 1{Lt≤xi}g(t, Tk, Tk+1, xi) with g defined in
(27), we obtain the dynamics of F via

dF (t, Tk, xi) = g(t−, Tk, Tk+1, xi)d1{Lt≤xi}

+ 1{Lt−≤xi}dg(t, Tk, Tk+1, xi)

+ d[1{Lt≤xi}, g(t, Tk, Tk+1, xi)].

13



As above we have that

d[1{Lt≤xi}, g(t, Tk, Tk+1, xi]

=

∫
I

(
1{Lt−+y≤xi} − 1{Lt−≤xi}

)
g(t−, Tk, Tk+1, xi)

(
eC(t,Tk,Tk+1;y) − 1

)
µL(dt, dy).

With (30) and (33) we obtain the stated dynamics. Here

d ˜̃Mt := dMx
t +

∫
Rd

(
e〈b
∗(t,Tk+1,xi)−b∗(t,Tk,xi),z〉 − 1

)
(µ(dt, dz)− ν(dz)dt)

+

∫
I

(
e(c∗(t,Tk+1,xi;y)−c∗(t,Tk,xi;y)) − 1

)
1{Lt−+y≤xi}(µ

L(dt, dy)− νL(dy)dt)

+ 〈b∗(t, Tk+1, xi)− b∗(t, Tk, xi), dW (t)〉. (35)

�

4.2 Forward rate modelling

In practical applications one needs a simple structure of the (Tk, xi)-rates which
is analysed in this section. For notational convenience, we consider forward bond
prices instead of (Tk, xi)-rates themselves. A result for the (Tk, xi)-rate can be
obtained in a similar way. Recall from (3) that λ(t, x) was the intensity that 1{Lt≤x}
jumps to zero at t. Let η(t) := inf{1 ≤ i ≤ n : Ti+1 > t}. In the following model the
forward rate is driven by the Lévy process Z through the functions βk; the reaction
on the loss process L can be adjusted through the functions γk. These may depend
on the loss occurring at t, ∆Lt, and the current loss level Lt− itself. We need the
following assumption:

(A6) For each (Tk, xi) ∈ S the functions βki : R+ → Rd, γki : R+ × I × [0, 1]→ R
are measurable and bounded.

Proposition 4.4. Assume (A1)-(A6) hold. Forward bond prices given on {Lt ≤
xi} by

dF (t, Tk, Tk+1, xi)

F (t−, Tk, Tk+1, xi)
= αki(t)dt+ 〈βki(t), dW (t)〉

+

∫
Rd

(
e〈βki(t),z〉 − 1

)
µ(dt, dz) +

∫
I

(
eγki(t,Lt−;y) − 1

)
1{Lt−+y≤xi}µ

L(dt, dy),

(36)

(Tk, xi) ∈ S, k < n and zero on {Lt > xi} constitute an arbitrage-free market if

αki(t) = −λ(t, xi) +

k∑
j=η(t)

〈βji(t),Σβki(t)〉

+

∫
Rd

(
e〈βki(t),z〉 +

(
e−〈βki(t),z〉 − 1

) k−1∏
j=η(t)

e−〈βji(t),z〉 − 1

)
ν(dz)

+

∫
I

(
eγki(t,Lt−;y) +

(
e−γki(t,Lt−;y) − 1

) k−1∏
j=η(t)

e−γji(t,Lt−;y)

)
1{Lt+y≤xi}ν

L(t, dy)

for all (Tk, xi), (Tk+1, xi) ∈ S.
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In this way the (T, x)-forward bond price explicitly relates to λ(t, x) and νL. With
this result at hand pricing of typical derivatives on the forward rate can be done in
a standard way. The input parameters for the modeler are βki, γki as well as Σ, ν
and νL while the αki are determined as above to ensure that the model is free of
arbitrage.

Proof. The idea is to identify b (see (6)) from the dynamics of F and then show
that the drift condition (12) holds with the chosen α: a comparison of (36) with
Corollary 4.3 and (35) yields that

βki(t) =

Tk+1∫
Tk

b(t, u, xi)du and γki(t, Lt−; y) =

Tk+1∫
Tk

c(t, u, xi; y)du.

The drift in (34) yields that

αki(t) = −λ(t, xi) + 〈Σβki(t), b∗(s, Tk+1, xi)〉

+

∫
Rd

(
e〈βki(t),z〉 + e−〈b

∗(t,Tk,xi),z〉
(
e−〈βki(t),z〉 − 1

)
− 1
)
ν(dz)

+

∫
I

(
eγki(y,Lt−) + e−c

∗(t,Tk,xi;y)
(
e−γki(y,Lt−) − 1

))
1{Lt+y≤xi}ν

L(dy). (37)

We have that βki(t) = b∗(t, Tk+1, xi)−b∗(t, Tk, xi) and we use the freedom to specify
b(t, T, xi) ≡ 0 whenever t > T . This in turn gives that for Tj < t < Tj+1

βji(t) =

Tj+1∫
Tj

b(t, u, xi)du =

Tj+1∫
t

b(t, u, xi)du = b∗(t, Tj+1, xi)

such that

b∗(t, Tk+1, xi) =

k∑
j=η(t)

βji(t). (38)

Analogously,

c∗(t, Tk+1, xi; y) =

k∑
j=η(t)

γji(t, Lt−; y). (39)

Inserting this in (37) gives the claim. �

4.3 (Tk, xi)-rate modelling

In this section we study the case where instead of the forward price process the
(Tk, xi)-rate has a simple structure. As in the previous setting we consider the
lognormal case including jumps. For simplicity we assume ν = 0, i.e. the dynamics
is only driven by a Brownian motion and L. In turn we will obtain the result from
Brace, Gatarek, and Musiela (1997) as a special case. Finally, we also give the
results for market models in a single-name credit risky case.

(A7) Assume ν(dx) = 0 and that for each (Tk, xi) ∈ S the functions βki : R+ → Rd,
γki : R+ × R+ → R are measurable and bounded.
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Proposition 4.5. Assume (A1)-(A4) and (A7) hold. (Tk, xi)-rates given by

dL(t, Tk, xi) = L(t−, Tk, xi)
(
αki(t)dt+ 〈βki, dW (t)〉

)
+

1 + δkL(t−, Tk, xi)
δk

∫
I

(
eγki(y,Lt−) − 1

)
1{Lt−+y≤xi}µ

L(ds, dy) (40)

for all (Tk, xi) ∈ S and zero otherwise constitute an arbitrage-free market if

αki(t) = −λ(t, xi) +

k∑
j=η(t)

1 + δjL(t−, Tj , xi)
δjL(t−, Tj , xi)

〈βji(t),Σβki(t)〉

+
1 + δkL(t−, Tk, xi)
δkL(t−, Tk, xi)

·
∫
I

(
eγki(t;y) +

(
e−γki(t,Lt−;y) − 1

) k−1∏
j=η(t)

e−γji(t,Lt−;y)

)
1{Lt+y≤xi}ν

L(dy)

(41)

for all (Tk, xi) ∈ S.

With this result at hand pricing of typical derivatives on the (Tk, xi)-rates can
be done in a standard way, see for example Section 6 in Brace, Gatarek, and Musiela
(1997). As previously, the input parameters for the modeler are λ, βki and γki while
the αki are determined as above to ensure that the model is free of arbitrage.

Proof. We proceed similar to the proof of Proposition 4.4. A comparison of (40)
with (26) yields that

βki(t) =
1 + δkL(t−, Tk, xi)
δkL(t−, Tk, xi)

(
b∗(t, Tk+1, xi)− b∗(t, Tk, xi)

)
(42)

such that

b∗(t, Tk+1, xi) = b∗(t, Tk, xi) + βki(t)
δkL(t−, Tk, xi)

1 + δkL(t−, Tk, xi)

=

k∑
j=η(t)

βji(t)
δjL(t−, Tj , xi)

1 + δjL(t−, Tj , xi)
,

compare (38). Furthermore, we have that γki(y, Lt−) = C(t, Tk, Tk+1xi; y) and
hence (39). From the drift term in (24) we obtain that

αki(t) = −λ(t, xi) +
1 + δkL(t−, Tk, xi)
δkL(t−, Tk, xi)

D(t, Tk, Tk+1, xi).

With (42) and (39)

D(t,Tk, Tk+1, xi) =
δkL(t−, Tk, xi)

1 + δkL(t−, Tk, xi)
〈Σβki(t), b∗(t, Tk+1, xi)〉

+

∫
I

(
eγki(t,Lt−;y) +

(
e−γki(t,Lt−;y) − 1

) k−1∏
j=η(t)

e−γji(t,Lt−;y)

)
1{Lt+y≤xi}ν

L(dy)

and we conclude as in Proposition 4.4. �
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Remark 4.6. With xm = 1 and c(·, T, 1; y) = 1 (from Assumption (A2)) gives
the risk-free Libor market model as a special case and (41) equals Equation (2.6)
in Brace, Gatarek, and Musiela (1997). Also a doubly stochastic model for single-
name credit risk as in Huehne (2007) is a special case: consider the doubly stochastic
random time τ which has an intensity (λt)t≥0. Choose Lt := 1

21{τ≤t}. Then, with

x1 = 1
2 , one has that the rates of defaultable bond satisfying, on {τ > t},

dL̄(t, Tk)

L̄(t−, Tk)
= ᾱk(t)dt+ 〈β̄k(t), dW (t)〉 (43)

and zero otherwise constitute an arbitrage-free market if

ᾱk(t) = −λ(t) +
〈
β̄k(t),

k∑
j=η(t)

δjL̄(t−, Tj)
1 + δjL̄(t−, Tj)

β̄j(t)
〉
. (44)
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