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Abstract. Shot-noise processes generalize compound Poisson processes in the follow-

ing way: a jump (the shot) is followed by a decline (noise). This constitues a useful

model for insurance claims in many circumstances: claims due to natural catastrophes
or self-exciting processes exhibit similar features. We give a general account of shot-

noise processes with time-inhomogeneous drivers and derive a number of useful results

for modelling, estimation and pricing with shot-noise processes. Furthermore, we give
some closed-form examples which are highly tractable and constitute a useful modelling

tool for dynamic claims processes. The results can in particular be used for pricing CAT

bonds, a traded risk-linked security.
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1. Introduction

An insurance company insures occurring claims in exchange for a regular premium. Nu-
merous works study the determination of an optimal premium: for example, the premium
should be high enough such that the ruin probability of the insurance company is suffi-
ciently small. The claim sizes itself are often considered to be independent and identically
distributed with arrival times being jump times from a Poisson process. A by now classical
extension of this model considers renewal times, where the inter-arrival times are no longer
exponential.

In this paper we extend this set-up further and study arrival times with random arrival
rate. In particular we will consider arrival rates having shot-noise features. This could,
for example, be used to model the claims arrivals after a catastrophe in a dynamic way:
many claims will be reported right after the catastrophe, such that the arrival rate in the
beginning is high. Further claims will be announced later and later corresponding to a
decreasing arrival rate. Shot-noise arrival rates directly model such an effect. An alternative
application appears when considering claims caused by a flood or hail: they typically admit
spatial patterns with a centre where the majority of the claims are located and a decreasing
number of claims with increasing distance from the centre. In a life insurance context, a
natural catastrophe like a tsunami also leads to a similar patterns.

The main idea we follow here is to give a new view on insurance claims processes inspired
by recent results in credit risk. In particular, we propose a model with multiple claim
arrivals, i.e. claims can occur at the same time. This is an important issue for catastrophe
modelling and for pricing CAT bonds. The size of CAT bond markets has been increasing
tremendously over the last decade. Currently, it reaches an all-time high: the outstanding
volume hit $19 billion dollars in October 20131.

Date: November 15, 2013.
1Sources: Artemis (2013) and Insurance Insider (2013).
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Besides this, we consider shot-noise processes driven by inhomogeneous Poisson processes,
such that seasonal effects can be taken into account.

Shot-noise processes are a well-known and well-studied object. Inspired by physical effects
as in Schottky (1918) many applications have been proposed. Many references may be found,
for example, in Parzen (1962), Lund et al. (1999) and Kühn (2004), among many others.
Applications in the insurance context are given in Mikosch (2009) or in Dassios and Jang
(2003). Shot-noise processes in credit risk are treated in Scherer et al. (2012) and in Jang
et al. (2011).

More precisely, consider a Poisson process N with jump times σ1, σ2, . . . . If L is a
non-decreasing function, then the time-transformed process

N(L (t)), t ≥ 0

is a inhomogeneous Poisson process if L is absolutely continuous. If L , however, has jumps,
then N has multiple claim arrivals with positive probability. In this case it might happen
that ∆Nt = Nt −Nt− > 1, i.e. more than one claim arrives at time t.

It turns out that L can be replaced by a stochastic process, which is non-decreasing,
and we will show how to incorporate shot-noise effects in here. The obtained results have a
sufficient degree of generality, in particular, we will not need Markovianity of the shot-noise
processes.

Besides the claim arrival process, one additionally needs a model for the loss magnitudes.
In this article we choose to take i.i.d. claims sizes. This approach can be extended to a
setting where all loss magnitudes between two events are stochastically dependent. This
can be achieved, e.g., via an Archimedean dependence structure induced by taking our
shot-noise process as mixing variable in a Marshall and Olkin (1967)-type conditionally
i.i.d. model. For a related approach in this direction see Czado et al. (2012).

The structure of the paper is as follows: in Chapter 2 we introduce a general form of shot-
noise processes and derive general results. In Chapter 2.1 we give the claims arrival process
with a stochastic intensity process having a shot-noise structure. In Chapter 3 we study
the pricing of catastrophe bonds while Chapter 4 we discuss the estimating of shot-noise
processes. The closing Chapter 5 shows how to simulate shot-noise processes.

2. Shot-Noise Processes

Consider a probability space (Ω,F ,P) with a filtration F = (Ft)t≥0 satisfying the usual
conditions, i.e. F is right-continuous and F0 contains all P-nullsets.

From a general viewpoint, non-life insurance can be described as follows: insurance claims
are reported at the arrival times 0 < T1 ≤ T2 ≤ · · · . An arrival time is a F-stopping time,
such that the available information at time t, given by Ft, contains the precise timing of all
claims occurred up to t. The size of claim i is denoted by Zi and we assume that the size
of claims are immediately available, i.e. Zi is FTi-measurable for all i ≥ 1. The aggregated
claim amount process C accumulates arrived claim sizes and is given by

Ct =

∞∑
i=1

1{Ti≤t}Zi, t ≥ 0.(1)

The sequence (Ti, Zi)i≥0 is a marked point process (MPP). We refer to Brémaud (1981)
for a detailed exposition of the theory of point processes and marked point processes, which
we follow here. If the claim sizes are non-zero, then there is a one-to-one correspondence
between the marked point process (Ti, Zi)i≥0 and its dynamic representation C = (Ct)t≥0
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and we will use both interchangeably. There is a further useful tool to describe this MPP:
the random measure defined by

M(ω; dt, dz) =

∞∑
i=1

δTi(ω),Zi(ω)(dt, dz)

where δ(t,z) denotes the Dirac-measure at the point (t, z). The compensator in the Doob-
Meyer decomposition of M will play an essential rôle in the following. By B(R) we denote
the Borel σ-algebra on the real line.

Fix A ∈ B(R) and note that Mt := M([0, t], A), t ≥ 0 is a point process. Assume that M

is F-adapted. If there exists a non-negative F-progressive process ` such that
∫ t

0
`(s)ds <∞

with probability one and for all non-negative, F-predictable processes Y it holds that

E
[ ∫ ∞

0

YsdMs

]
= E

[ ∫ ∞
0

Ys`sds

]
,

then ` is called the F-intensity of M .

Definition 2.1. Consider a marked point process with associated random measure M .
Suppose that for each A ∈ B(R), M([0, t], A) has the F-predictable intensity (`t(A))t≥0.
Then `t(dz) is called F-intensity kernel of M .

As the filtration often will be clear from the context, we will call ` simply intensity
kernel or intensity of the marked point process. The intensity gives the compensator in the
Doob-Meyer decomposition of the marked point process. More generally, we have that for
a F-predictable processes Y with

E
[ ∫ t

0

∫
|Y (s, z)|`s(dz)ds

]
<∞, t ≥ 0,

the process ∫ t

0

∫
Y (s, z)(M(ds, dz)− `s(dz)ds), t ≥ 0

is a F-martingale. Under weaker assumptions we of course only obtain local martingales,
see Brémaud (1981), Corollary VIII.C4.

Example 2.1 (Cramér-Lundberg model). Consider a Poisson process with jump times
Tn, n ≥ 1 and assume that Zn, n ≥ 1 are independent and identically distributed (i.i.d.),
and independent of Mt =

∑
n≥1 1{Tn≤t}. Then the claims process C is a compound Poisson

process. Together with its canonical filtration given by Ft = σ(Mt) ∨ N where N denotes
the P-nullsets this model fits in our set-up.

Lundbergs exponential upper bound on the ruin probability is a classical result, see
Mikosch (2009) Theorem 4.2.3, and ensures that if the insurer starts with a sufficiently high
initial capital the ruin probability is small.

Example 2.2 (Stochastic discounting). If the insurance company discounts the claim costs
from arrival Tn to today t, the following modification of (1) is appropriate:

Ct =

∞∑
n=1

1{Tn≤t}h(t, Tn), Zn, t ≥ 0,

where h(t, T ) is a non-negative, measurable function, for example h(t, T ) = e−r(t−T ) or

h(t, T ) = e−
∫ t
T
r(s)ds. Assuming non-negative interest rates implies that h is non-increasing

in t. Moreover, h(T, T ) = 1. The process C in this case is a special shot-noise process which
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we will study in the following section in detail. Remarkably, Bremaud (2000) shows that
the Lundberg estimate still holds under h(t, T ) = g(t− T ) with non-increasing function g if
the claim sizes are in a certain sense not too heavy-tailed.

The Poisson process has a constant arrival rate, i.e. the expected number of claim arrivals
over a time interval [t, t+ ∆] is always the same. It has been a successful road in insurance
mathematics to generalize the distribution of inter-arrival times by means of renewal pro-
cesses. One of the main achievements was to show that similar results as in the Poissonian
case hold in the limit when time grows large, see Mikosch (2009) for a detailed account and
further references.

Our intention here is to introduce a dynamic dependence of the claim arrival rate with
respect to a stochastic process. For example, in the case of a hurricane, the claims are
not reported immediately to the insurer but arrive delayed over time. It is expected that
most claims are reported soon after the catastrophe, while some claims will be reported late.
Moreover, the height of the claim is often not known precisely when the claim is announced,
such that a dynamic evolution of the claims process is necessary. An interesting question is
the estimation of the total claim size of the catastrophe when only a fraction of the total
claims is known. This question will be discussed in the section on estimation, Section 4.

Stochastic arrival rates. We study models allowing for factor-driven dynamics by borrowing
heavily from current developments in credit risk, in particular reduced form modelling,
see Filipović (2009) or Bielecki and Rutkowski (2002) for detailed accounts. A particular
interesting example will be given in terms of general shot-noise processes.

Example 2.3 (Doubly stochastic setting). Consider a non-decreasing process L = (Lt)t≥0

starting at zero and i.i.d., standard-exponentially distributed random variables E1, E2, . . . ,
independent of L . Set T0 = 0 and define

Ti := inf{t ≥ 0 : Lt ≥ E1 + · · ·+ Ei}, i ≥ 1.

Then L takes the rôle of a cumulated intensity process. Note that in this model it is possible
that Ti = Ti−1, if L has jumps. We will call this effect joint jumps in the claims arrival
process.

On the other side, if L is absolutely continuous, i.e.

Lt =

∫ t

0

`sds,

the probability of joint jumps vanishes. The process ` is then the intensity of the point
process (Ti)i≥1.

Without further assumptions, given L , the point process (T1, T2, . . . ) always exists, but
can be explosive. Uniqueness of the distribution of the point process (T1, T2, . . . ) requires
some further assumptions, in particular on the considered filtration, see Jacod (1975).

In the following we generalize the definitions of intensity to that of cumulated intensities.
First, for a point process (Tn)n≥1 with associated counting process Nt :=

∑
n≥1 1{Tn≤t},

t ≥ 0 we call a predictable random measure L cumulated intensity measure if

E
[ ∫ ∞

0

YsdNs

]
= E

[ ∫ ∞
0

YsL (ds)

]
,

for all non-negative F-predictable processes Y . The non-decreasing, predictable process
Lt := L ([0, t]) will be called cumulated intensity process.
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The model we will study falls into this general class. In our applications, if Lt =
∫ t

0
`sds,

then ` will also be called arrival rate. If `t = c with c > 0 then we are back in the Poisson-
process case as in Example 2.1.

Intuitively, this set-up can also be viewed as a random time change of a Poisson pro-
cess: the number of arrival times before t can be represented as M̃(L (t)), t ≥ 0 with an

independent Poisson process M̃ with intensity 1.

Definition 2.2. Consider a marked point process with associated random measure M .
Suppose that for each A ∈ B(R), M([0, t], A) has the cumulated intensity measure L (dt, A).
Then L (dt, dz) is called F-cumulated intensity measure of M .

The cumulated intensity measure determines the compensator in the Doob-Meyer decom-
position, such that L is also called compensator of M : if Y is predictable, such that

E
[ ∫ t

0

∫
|Y (s, z)|Ls(ds, dz)

]
<∞,

for all t ≥ 0, the following process∫ t

0

∫
Y (s, z)(M(ds, dz)−Ls(ds, dz)), t ≥ 0

is a F-martingale. The compensator in the Doob-Meyer decomposition is unique, and so is
the cumulated intensity measure of M . For further details see Jacod and Shiryaev (2003)
Section II.1.

In the following paragraph we will introduce specific processes which we will later use to
construct cumulated intensity measures.

Shot-noise processes. Consider an inhomogeneous Poisson process N with intensity function
λ and denote by 0 < τ1 < τ2 < · · · its jump times. Let ξn, n ≥ 1 be random variables
with values in Rd, i.i.d. and independent of N . Then the driving process (τn, ξn)n≥1 is
a inhomogeneous compound Poisson process. Finally, consider a measurable function h :
R≥0 × R≥0 × Rd → R and define the process S by

St :=
∑
n≥1

1{τn≤t}h(t, τn, ξn), t ≥ 0.(2)

Then we call S a shot-noise process. The function h is called noise-function. This definition
is general enough for our purposes, but could be extended at the cost of more complicated
results. For example, it is possible to include general random compensators for N or even
infinity activity for the driving process. We refer to Parzen (1962) or Schmidt and Stute
(2007) for references and further literature on shot-noise processes.

If µ is the random measure associated with the marked point process (τn, ξn)n≥1, then

St =

∫ t

0

∫
Rd
h(t, s, x)µ(ds, dx), t ≥ 0.(3)

This representation shows that in general, S will not be a semi-martingale. In most ap-
plications, however, we will consider h(t, s, x) = g(t−s, x) and the semi-martingale property
in this case is simpler to study.

Example 2.4. If G is not of finite absolute variation, S is no longer a semi-martingale. For
example, consider a Brownian motion W such that (Wt)t≥0 is F0-measurable. Letting

g(t, x) = xWt

gives that dSt = Zt−dWt + dZt which is not a semi-martingale (W is F0-measurable!).
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For the following result, we denote by ν the compensator of µ and consider shot-noise
processes of the form

St :=
∑
n≥1

1{τn≤t}g(t− τn, ξn), t ≥ 0.(4)

Lemma 2.1. Fix T > 0 and assume that g(t, x) = g(0, x) +
∫ t

0
g′(s, x)ds for all 0 ≤ t ≤ T

and all x ∈ Rd. If ∫ T

0

∫
Rd

(g′(s, x))2ν(ds, dx) <∞,(5)

P-a.s., then (St)0≤t≤T as in (4) is a semi-martingale.

Proof. Under condition (5), we can apply the stochastic Fubini theorem in the general
version given in Theorem IV.65 in Protter (2004). Observe that

St =

∫ t

0

∫
Rd

∫ t

s

g′(u− s, x)duµ(ds, dx) +

∫ t

0

∫
Rd
g(0, x)µ(ds, dx)

=

∫ t

0

∫ s

0

∫
Rd
g′(u− s, x)µ(ds, dx) du+

∫ t

0

∫
Rd
g(0, x)ν(ds, dx) +Mt

with a local martingale M . This is the semi-martingale representation of S and we conclude.
�

In the exponential case, i.e. when g(t, x) = xe−bt, we obtain g(t, x) = −bg(t, x) and
g(0, x) = x, such that

St =

∫ t

0

−bSudu+ Zt.

In this case, S is also a Markov process. This is, under quite weak assumptions, the only
specification where a shot-noise process is Markovian.

For applications it is important to have a repertory of parametric families which can
be used to estimate the shot-noise process from data. We give some specifications in the
following example which lead to highly tractable models. These examples will partly be
taken up in Example 2.10 in an integrated form.

Example 2.5 (Parametric families). In this example we concentrate on the multiplicative
structure

g(t, x) = g(t)x

and give a number of useful specifications for the noise function g.

(1) Regime switching : The shot at Ti has a constant impact for a specified time length
β and after β the impact jumps to a new level (regime) which could even be zero.
For α ∈ R, β > 0, let

g(t) = 1{t≤β} + α1{t>β}.

For α = 0, the effect of the shot vanishes totally after a time period of length β.
(2) Exponential structure: for β > 0, let

g(t) = e−βt.

Here, the effect of a shot decreases exponentially over time. As already mentioned,
in this case S is Markovian.

We close this section with an example where claims are discounted with respect to deter-
ministic, but non-constant interest rates.
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Figure 1. Illustration of a shot-noise process (top) with exponential struc-
ture. The graph on the bottom shows a counting process whose jump times
have the shot-noise process as intensity `. The dashed line is the cumulated
intensity process L (t).

Example 2.6 (Discounting claims). Following Example 2.2 we consider claims arriving
according to a Poisson process with constant intensity `. The risk-free rate of interest r is

a deterministic, measurable function such that
∫ T

0
r(s)ds < ∞. The value of claims of size

1 arriving before T , discounted to current time 0 is given by

Ct =

∞∑
n=1

1{Ti≤t}e
−

∫ Tn
0

r(s)ds,

which is a shot-noise process with noise function h(t, T ) = e−
∫ T
t
r(s)ds. Proposition 2.2 will

enable us to compute the expectation of the discounted claims. This approach can be
extended to incorporate stochastic interest rates as well.

Example 2.7 (Delayed claims). Often, when a claim is announced to the insurer, the size
of the claim is not known immediately. In this case, there is a delay of the claim. We could
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incorporate this in our set-up by letting ξ ∈ R×R≥0 where ξ2 denotes the delay. The noise
function

h(t, T, x) = x1g(t− (T + x2))1{t≥T+x2},

x = (x1, x2)>, allows to include such effects in multiplicative model as in Example 2.5.

For the description of the statistical properties of the model, the Fourier transform of the
shot-noise process is a central quantity which is given in the following result. For convenience
of the reader we give a proof of this classical result in our general set-up. We denote by Λ(t)
the cumulated intensity function of the time-inhomogeneous Poisson process N .

Proposition 2.2. Fix t ≥ 0 and assume that Λ(t) <∞ for all s ∈ [0, t]. Let η be U [0,Λ(t)]-
distributed, independent of ξ1 and

ϕ(t, θ) := E[exp(iθh(t,Λ−1(η), ξ1))]− 1.

Then, for a shot-noise process S as in (2) it holds for all θ ∈ R that

(6) E
(
eiθSt

)
= exp

(
Λ(t)ϕ(t, θ)

)
.

The independence of ξ1 and η allows to compute ϕ by simple integration:

E[exp(iθh(t, η, ξ1))] =

∫ t

0

1

t
E[exp(iθh(t, s, ξ1))]ds.

In a model with multiplicative structure, i.e. h(t, s, x) = h(t, s)x we have that

E[exp(iθh(t, s, ξ1))] = E[exp(iθh(t, s)ξ1)],

such that ϕ can be computed from the Fourier transform of ξ1. We illustrate this in Example
2.8 below

Central to the proof is the following lemma which gives a relation of the jump times of the
Poisson process to order statistics of i.i.d., uniformly distributed random variables. The order
statistic of η1, . . . , ηk is obtained through ordering the sample by size, η1:k < η2:k < · · · < ηk:k

(in our case there are no ties, i.e. all values are different).

Lemma 2.3. Consider a (homogeneous) Poisson process N with jump times σ1, σ2, . . . ,
t > 0 and k ∈ N. Conditional on Nt = k it holds that

(σ1, . . . , σk)
L
= (η1:k, . . . , ηk:k)(7)

where η1, η2, . . . , ηk are i.i.d., and uniformly distributed on [0, t].

For a proof we refer to p.502 in Rolski et al. (1999).

Proof. We first consider the case when λt ≡ 1. Then N is a standard Poisson process and
we denote its jump times by σ1, σ2, . . . . By Lemma 2.3, independence of ξ := (ξ1, ξ2, . . . )
and N , and the i.i.d. property of ξ and measurability of h we obtain that, conditionally on
NT = k

k∑
n=1

h(t, σn, ξn)
L
=

k∑
n=1

h(t, ηn:k, ξn)
L
=

k∑
n=1

h(t, ηn, ξn).(8)

Hence, as k was arbitrary it follows that∑
σn≤t

h(t, σn, ξn)
L
=
∑
σn≤t

h(t, ηn, ξn)
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where (η1, η2, . . . ) are i.i.d., U [0, t]-distributed, and independent of N and ξ. Hence,

E
[ ∏
σn≤t

eiθh(t,ηn,Vn)
]

=
∑
k≥0

e−t
tk

k!

k∏
n=1

E
[
eiθh(t,η1,V1)

]
= exp

(
− t+ tE

[
eiθh(t,η1,ξ1)

])
.(9)

Now we utilize the representation of an inhomogeneous Poisson process as time-transformation
of a standard Poisson process: the process (N(Λ(s)))s≥0 with Λ(s) :=

∫ s
0
λvdv is a time-

inhomogeneous Poisson process with intensity function λ. The jump times of N(Λ) are given
by τn := Λ−1(σn) because ∑

n≥1

1{σn≤Λ(t)} =
∑
n≥1

1{Λ−1(σn)≤t}

where Λ−1(t) := inf{s ≥ 0 : Λ(s) ≥ t} denotes the generalized inverse of Λ. We obtain that

St
L
=
∑
τn≤t

h(t, τn, ξn)

=
∑

σn≤Λ(t)

h(t,Λ−1(σn), ξn)

and, by (9),

E
[

exp(iθSt)
]

= E
[

exp
( ∑
σn≤Λ(t)

h(t,Λ−1(σn), ξn)
)]

= exp

(
− Λ(t) + Λ(t)E

[
eiθh(t,Λ−1(η1),ξ1)

])
.

Note that σ1, . . . now take values in [0,Λ(t)], such that η1 ∼ U [0,Λ(t)]. The expectation in
the last equation equals

E
[
eiθh(t,Λ−1(η1),ξ1)

]
= ϕ(θ) + 1

and we conclude. �

Corollary 2.4. Assume that Λ(t) = λt, such that N is a Poisson process with intensity
λ > 0.

(i) If h(t, T, x) = 1 we obtain that N(t) is Poisson(λt)-distributed:

E
[
eiθSt

]
= E

[
eiθNt

]
= exp

(
λt(eiθ − 1)).

(ii) If h(t, T, x) = x then S is a compound Poisson process. We denote by ϕξ(θ) :=
E[eiθξ1 ] the Fourier transform of ξ1 and obtain

E
[
eiθSt

]
= exp

(
λt(ϕξ(θ)− 1)).

(iii) If h(t, T, x) = xe−b(t−T ) we obtain the classical Markovian shot-noise process and

E
[
eiθSt

]
= exp

(
λtϕ(t, θ))(10)

with

ϕ(t, θ) = E
[
eiθe

−bη1ξ1
]
− 1 =

1

t

∫ t

0

ϕξ(θe
−bx)dx− 1.
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Proof. The first two results follow immediately. Regarding the third claim, note that
Λ−1(t) = t

λ . Together with η ∼ U [0, λt] we obtain that

Λ−1(η) =
1

λ
η ∼ U [0, t].

Then also t− η ∼ U [0, t] and we obtain that

ϕ(t, θ) = E
[
eiθe

−bη1ξ1
]
− 1

=
1

t

∫ t

0

E
[
eiθe

−bx ξ1
]
dx− 1

=
1

t

∫ t

0

ϕξ(θe
−bx)dx− 1

by Fubini’s theorem. �

Related results may be found in Rice (1977). The semi-Markov case is considered in
Smith (1973).

Example 2.8 (A parametric example for the jump distribution). The following example
illustrates the applicability of Proposition 2.2. Consider a Poisson process with intensity λ
as driver and ξi which have an Erlang distribution. This is a flexible class of positive random
variables which contains the exponential and χ2

n-distribution as special cases: consider ξ1 ∼
Γ(n, ν) with n ∈ N and ν > 0. Then

ϕξ (θ) = E(eiθV1) =

(
1− iθ

ν

)−n
.

The tractability of the Erlang-distribution mainly attributes to the following result:∫
an

x(a+ bx)n
dx = ln

( x

a+ bx

)
+

n−1∑
j=1

aj

j(a+ bx)j
.(11)

We choose h(t, T, x) = e−b(t−t)x and compute∫ t

0

ϕξ(θe
−bx)dx =

∫ t

0

νn(
ν − iθe−bs

)n ds
=

1

b

∫ 1

e−bt

νn

x (ν − iθx)n
dx

(11)
= ln

iν + θe−bt

iν + θ
+

n−1∑
j=1

(
νj

j(ν − iθ)j
− νj

j(ν − iθe−bt)j

)
and we obtain the characteristic function of St from (10). For n = 1 we obtain an exponential
distribution with parameter ν > 0 and the obvious simplification.

2.1. Claims driven by shot-noise processes. Now we are in the position to put our
ingredients together for the modelling of insurance claims. Let A : R≥0 → R≥0 be a
non-decreasing function denoting the cumulated claim arrival intensity when there is no
shot-noise process present. As previously, we consider an inhomogeneous Poisson process N
with jump times (τn)n≥1 and intensity function λ. The shots are given by the i.i.d. sequence
ξ1, ξ2, . . . . The considered shot-noise process S is

St :=
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0,



CATASTROPHE INSURANCE MODELLED WITH SHOT-NOISE PROCESSES. 11

similar to Equation (4).
As before, claims arrive at times T1, T2, . . . where the associated point process has cum-

lated intensity measure (compensator) L . In this section, the shot-noise process will be used
as basis for L , such that we assume that the function G : R≥0 ×Rd → R is non-decreasing
in its first coordinate, time. Moreover, we assume that

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0.(12)

Example 2.9 (Shot-noise arrival rate). If the claim arrival rate ` is given by a shot-noise
process with noise function g, then L falls into the above class: note that

Lt =

∫ t

0

`sds =
∑
τn≤t

∫ t

τi

g(s− τn, ξn)ds =
∑
τi≤t

G(t− τn, ξn)(13)

with G(t, x) =
∫ t

0
g(s, x)ds. In this case, G(0, x) = 0 reflecting the continuity of L .

As indicated in the above example we will consider integrals over shot-noise processes as
cumulated intensity processes. In view of classical applications this class of processes is quite
unusual as the noise function is increasing. We distinguish these two cases in our notation
by always using g and G for the noise function in the original shot-noise process and the
integrated shot-noise process, respectively.

For concrete implementations it is important to have a repertory of non-decreasing shot-
noise processes which can be used to estimate the shot-noise process from data. We give
some specifications in the following example which lead to highly tractable models.

Example 2.10 (Parametric families). In the following examples we consider the multiplica-
tive structure

G(t, x) = G(t)x

where G : R≥0 → R≥0 is non-negative and increasing in its first coordinate, and the random
variables ξn, n ≥ 1 have values in R≥0.

(1) Linear structure: for α ∈ [0, 1] , β > 0, let

G(t) = α+ (1− α)
t

β
1{t≤β} + (1− α)1{t>β}.

This response function starts at α and increases linearly over the interval [0, β] until
it reaches 1. For α = 0, this function is absolutely continuous.

(2) Exponential structure: for α ∈ [0, 1] , β > 0, let

G(t) = α+ (1− α)
(
1− e−βt

)
.

Here, G starts at α and increases exponentially to 1. The parameter α controls the
impact of the jump size on S. If α = 0, G is differentiable. The parameter β controls
the speed of the growth.

(3) Rational structure: for α ∈ [0, 1] , β > 0, let

G(t) = α+ (1− α)
t

t+ β
.

This provides an alternative specification to the exponential structure.

An illustration of the last example may be found in Figure 2.



12 THORSTEN SCHMIDT

0
20

40
60

0
10

20
30

40
50

60

Figure 2. Illustration of the cumulated shot-noise intensity L with ex-
ponential structure and jumps (α 6= 0. The graph on the bottom shows a
counting process whose jump times have cumulated intensity process L .
Multiple claim arrivals occur when L jumps.

3. Catastrophe bonds

Catastrophe bonds (CAT bonds) are risk-linked securities which allow to transfer insur-
ance risks to investors. While the valuation of car insurance can effectively be done using
the law of large numbers, catastrophe risks pose a large challenge due to highly dependent
claim arrivals. Our shot-noise approach sets a framework which is ideally suited to model
such risks.

The size of CAT bond markets has been increasing continuously over the last decade and
has reached an outstanding volume of $19 billion dollars in October 2013.

We consider the following stylized version: a CAT bond offers a coupon payment c at
payment dates t1, . . . , tK and the repayment of the principal 1 at tK if no trigger event
happened. In the case of a trigger event happened, the coupons are ceased and a fraction δ
of the principal is paid back.
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As an example we consider as trigger event if the claims process C =
∑
Tn≤t Zn crosses

a barrier B and assume zero interest rates. In this case the payment at tk would be

fk(Ctk) =

{
c+ 1{k=K}, if Ctk ≤ B,
δ1{k=K}, if Ctk > B.

for k = 1, . . . ,K.
For the pricing of the CAT bond we need to choose a risk-neutral measure Q and obtain

that the value of the CAT bond computes to the expectation (under Q) of discounted pay-
offs, i.e.

T∑
k=1

EQ
[
β(tk) fk(Ctk)

]
.

Here β(t) is the discounting function for the time period [0, t], so for example β(t) =

exp(−
∫ t

0
rudu) with risk-free rate of interest r. The expectations can of course always

be computed by means of a Monte-Carlo simulation. In the following, we show how to
obtain a more explicit result.

First, we assume that β is deterministic. This is reasonable in insurance applications as
the risks due to claims are huge in comparison to the effect of stochastic interest rates. This
assumption can easily be relaxed to interest rates which are independent of the claim sizes.
More general interest rate models, however, require a change of numéraire which comes at
the cost of more complicated results.

If interest rates are deterministic, we obtain that

EQ
[
β(tk)1{Ctk≤B}

]
= β(tk)Q(Ctk ≤ B)

and it remains to compute the boundary crossing probabilities of the claims process in the
following.

For more information on CAT bonds we refer to Cox and Pederson (2000), Louberge
et al. (1999) or Lewis (2007). Our model also extends the approach in Dassios and Jang
(2003) where shot-noise Cox processes in an exponential structure with α = 0 (see Example
2.5) have been applied to derivatives on a catastrophe index.

3.1. Equivalent measure changes. Following the results in Schmidt (2013) we study
measure changes for shot-noise processes. This is an important tool for pricing, filtering as
well as for importance sampling of shot-noise processes.

The basic driver of the shot-noise process S as given in (2) is the marked point process
Φ = (τn, ξn)n≥0. It is thus sufficient to study changes of measure for Φ. Already in Brémaud
(1981) it was shown how to change measure as in the Girsanov theorem for marked point
processes. We will present this results in the following. In Schmidt (2013) it was shown that
these measure changes include all equivalent measure changes.

We consider an initial filtration H ⊂ F0 and denote by P the predictable σ-field. De-
note by µ the random measure associated to Φ as in (3). As above we assume that the
compensator of the process Φt =

∑
τn≤t ξn, t ≥ 0 is given by ν(t, dx)dt, i.e.

Φt −
∫ t

0

∫
Rd
uν(s, dx)ds

is a local martingale and the kernel ν(ω, t, dx) is P ⊗ Rd-measurable. Then ν(t,Rd) is the

intensity at t for a jump and, if the intensity is positive, ν(t,dx)
ν(t,Rd)

is the respective jump-size

distribution.
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Consider a P ⊗ Rd-measurable positive function Y such that∫ t

0

∫
Rd
Y (s, u)ν(s, du)ds <∞(14)

P-alomst surely and let the likelihood-process Z be given by

Zt = e−
∫ t
0

∫
Rd (Y (s,u)−1)G(s,du)ds

∏
τn≤t

Y (τn, ξn), t ≥ 0.(15)

Fix a time horizon T > 0 and assume that E[ZT ] = 1. Then dP′ := ZT dP defines a
probability measure which is equivalent (as Y is positive and so Z) to P. Under P′, Φ is a
(possibly explosive) marked point process and its compensator w.r.t. P′ is given by

Y (t, u)ν(t, du)dt.

3.1.1. Preserving independent increments. For tractability reasons one often considers shot-
noise processes driven by a marked point process which has independent increments. If the
increments are moreover stationary, then Φ is a Lévy process. We cover both cases in this
section.

Theorem 3.1. Assume that P ∼ P′. Let the density process of P′ relative to P be of the
form (15).

(1) If Φ has independent increments under P and P′, then Y is deterministic.
(2) If Φ has independent and stationary increments under P and P′, then Y is deter-

ministic and does not depend on time.

For a proof, see Schmidt (2013).

Example 3.1 (The Esscher measure). Consider a generic n-dimensional stochastic process
X. Then the Esscher measure (Esscher (1932)) is given by the density

Zt =
eaXt

E(eaXt)

where a ∈ Rd is chosen in such a way that Z is a martingale. Esche and Schweizer (2005)
showed that the Esscher measure preserves the Lévy property. Dassios and Jang (2003)
applied the Esscher measure to obtain an arbitrage-free pricing methodology for catastrophe
bonds under shot-noise processes.

Example 3.2 (The minimal martingale measure). The minimal martingale measure as
proposed in Föllmer and Schweizer (1990) for a certain class of shot-noise processes has
been analysed in Schmidt and Stute (2007). It can be described as follows: consider the
semi-martingale X = A+M where A is an increasing process of bounded variation and M
is a local martingale. Assume that there exists a process ` which satisfies

At =

∫ t

0

`sd〈M〉s.

Then the density of the minimal martingale measure with respect to P is given by

Zt = E
(∫ ·

0

`s−dMs

)
t

.

Here E denotes the Doleans-Dade stochastic exponential, i.e. Z is the solution of dZt =
Zt−`t−dMt.

In Altmann et al. (2008) the minimal martingale measure was obtained by a considering
discrete time first and then taking limits.
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3.2. Pricing. In Dassios and Jang (2003) the authors choose the Esscher measure to obtain
a pricing measure in the context of CAT bonds. Choosing the pricing measure in the case
of a CAT bond is simpler than in many other cases because the underlying (the catastrophe
index) is not a traded asset. In this case any equivalent measure is a martingale measure.

We take a more general approach here and only assume that certain properties of the
shot-noise process hold under Q. Given this properties, we derive general pricing rules.
A calibration to market data gives access to the risk-neutral measure Q. Possible ways
to do this are to proceed as in Dassios and Jang (2005) via Kalman filtering, or to use a
minimal-distance estimation as in Section 4.

According to Theorem 3.1 we assume a simple structure of Φ under Q. This is in spirit
with many applied results in mathematical finance, see for example Elliott and Madan
(1998).

(A1): We assume that under Q the marked point process Φ has i.i.d. marks (ξn)n≥1 and
the point process (τn)n≥1 is a inhomogeneous Poisson process.

This assumption will be satisfied under an Esscher change of measure, which is an im-
portant class for insurance applications. If we have a deterministic interest rate, β(t) is
constant and so for the pricing it is sufficient to compute the expectation of fk(Ltk) only.

The key to efficient pricing methodologies is to obtain the Fourier transform of the claims
arrival process. In this regard, we consider the set-up as in Section 2.1: claims arrive at times
T1, T2, . . . where the associated point process Mt =

∑
n≥1 1{Ti≤t} has cumulated intensity

measure (compensator) L . We assume that

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn), t ≥ 0

where A : R≥0 → R≥0 is a non-decreasing measurable function. The driver of the shot-noise
process is an inhomogeneous Poisson process with jump times (τn)n≥1 and intensity function
λ. The shots are given by the i.i.d. sequence ξ1, ξ2, . . . .

Proposition 3.2. Consider the point process Mt =
∑
n≥1 1{Ti≤t}, t ≥ 0, the independent

sequence Z1, Z2, . . . and the cumulated claims at time t,

Ct =
∑
Tn≤t

Zn.

Then, for all θ ∈ R,

EQ
[
eiθCt

]
=
∑
n≥1

Q(Mt = n)(ϕZ(θ))n.

Proof. The result follows immediately by independence as

EQ
[
eiθCt

]
=
∑
n≥1

EQ
[
1{Mt=n}e

iθ(Z1+···+Zn)
]

=
∑
n≥1

Q(Mt = n)(ϕZ(θ))n. �

Of course, if Zn stems from a family of distributions which is stable under convolution,
(ϕZ(θ))n will be easy to compute. In the following result we compute the remaining proba-
bilities.

In the doubly-stochastic case as in Example 2.3 we have the following, important result:
recall that this setting can be viewed as a stochastic time change: M(t) = M̃(L (t)), with
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an Poisson process M̃ with intensity 1, independent of L . Then

Q(M(t) = n) = EQ[Q(M̃(L (t)) = n|L )
]

= EQ
[ 1

n!
exp(−L (t))(L (t))n

]
.

Proposition 3.3. Assume that

Q(Mt = n) =
1

n!
EQ
[

exp(−L (t))(L (t))n
]
.(16)

Set

ϕ(t, θ) := E
[

exp
(
− θG(t− Λ−1(η), ξ1)

)]
− 1;

here η is U(0,Λ(t))-distributed, independent of ξ1. Then

Q(Mt = n) =
1

n!
e−

∫ t
0
A(s)ds ·

(
(−∂θ)neΛ(t)ϕ(t,θ)

)
.

Proof. We compute the right hand side of (16). Consider an integrable, non-negative random
variable X. Then, E[exp(−θX)] <∞ for all θ ≥ 0. Moreover, by monotone convergence,

E[X exp(−θX)] = −E[∂θ exp(−θX)] = −∂θE[exp(−θX)]

and, proceeding iteratively,

E[Xn exp(−θX)] = (−∂θ)nE[exp(−θX)].

Then, analogously to Proposition 2.2, we obtain that

EQ
[

exp(−θL (t))
]

= e−θA(t) · exp
(
Λ(t)ϕ(t,−iθ)

)
and the conclusion follows. �

In Example 2.8 the n-th derivative can be computed. Otherwise one has to resort to
numerical methods.

Now the way to pricing of the CAT-bond is clear: one can either invert the Fourier
transform by Fast-Fourier methods or, alternatively compute

qn := Q(Z1 + · · ·+ Zn ≤ B)

which can sometimes be obtained explicitly, such that

EQ[1{Ct≤B}] =
∑
n≥1

Q(Mt = n)qn.

4. Estimating shot-noise processes

The estimation of shot-noise processes is an important part in the application of these
models. A possible approach in this direction uses filtering methods and has been started
in Dassios and Jang (2005). Further approaches for point process estimation may be found
in Jacobsen (1982) or Karr (1986). A recent account which especially treats shot-noise
processes may be found in Kopperschmidt and Stute (2013) which we will present now.

The key assumption in the approach of Kopperschmidt and Stute (2013) is that i.i.d.
observations of the shot-noise process are at hand. The key tool to estimation is to use a
parametric compensator of the point process and estimate the unknown parameter in terms
of a minimum-distance estimator. In the insurance context it is often the case that i.i.d.
observations are available: if used for modelling the claims arrivals after catastrophes, each
catastrophe with associated claims process constitutes such a single observation.
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We will consider the following case: observations consist of data of i = 1, . . . , n catastro-
phes. For each catastrophe i the claims arrive at times T i1, T

i
2, . . . and we observe the point

processes

N i
t =

∑
n≥1

1{T in≤t}, t ∈ [0, T̄ ]

on a fixed time interval [0, T̄ ]. Typically T̄ will be quite large such that all claims are
included in the study.

We assume that N i are independent and identically distributed such that each N i has a
compensator of the same type. Each claims arrival processN i is driven by an individual shot-
noise process in spirit of Equation (12). We assume that the time points of the catastrophes
are observable: more generally, to each N i we associate the catastrophe arrivals τ i1, τ

i
2, . . .

which are observable. Moreover, to each τ in there is an associated ξin which is also assumed
to be observable. It denotes a proxy for the overall size of the catastrophe. This could be
obtained from expert opinions, the area of land reached by the catastrophe, or the cumulated
claim sizes. It refers to the size of the shot in the compensator of N i.

Choosing a parametric approach, we follow Equation (12) and consider a parametric shot-
noise form. More precisely, given the parameter θ ∈ Θ ⊂ RK we assume that compensator
of N i is given by

L i
t (θ0) = A(t, θ0) +

∑
τ in≤t

G(θ0, t− τ in, ξin), t ∈ [0, T̄ ]

for some θ0 ∈ Θ.
The first step towards the estimation is the introduction of the aggregated point process

and the aggregated compensator:

N̄n =
1

n

n∑
i=1

N i, L̄n(θ) =
1

n

n∑
i=1

L i.

The second step is to define a suitable distance. For the finite measure µ we consider the
semi-norm

‖ f ‖µ:=

[ ∫
[0,T̄ ]

f2(t)µ(dt)

]1/2

.

The measure µ induced by N̄n leads to the following semi-norm

‖ f ‖N̄n =
1

n

n∑
i=1

∑
j≥1

f2(τ ij)1{τ ij≤T̄}.

Then, the quantity

‖ N̄n − L̄n(θ) ‖N̄n
represents an overall measure of fit for the observed data N̄n to the compensator L̄n(θ).
The final estimator of θ0 is the parameter which maximizes this fit:

θn := arg inf
θ∈Θ
‖ N̄n − L̄n(θ) ‖N̄n .(17)

The following weak identifiability assumption will be needed for consistency. By Θc we
denote the closure of Θ. First, we assume that for all i = 1, . . . , n

E[N i(T̄ )] <∞ and E[L i
T̄ (θ)] <∞.
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(A2): Let Θ ⊂ RK be a bounded open set and suppose that for each ε > 0

inf
‖θ−θ0‖≥ε

‖ E[L (θ0)−L (θ)] ‖E[L (θ0)]> 0.

Moreover, the process (t, θ) → Lt(θ) is continuous with probability one and admits a
continuous extension to [0, T̄ ×Θc.

The following result, given in Theorem 1 in Kopperschmidt and Stute (2013), shows consis-
tency of the minimum-distance estimator.

Theorem 4.1. Assume that (A2) holds. Then

lim
n→∞

θn = θ0 with probability one.

The proof of the theorem may be found in Kopperschmidt and Stute (2013). It relies on
generalized U -Statistics and an appropriate version of the Hewitt-Savage 0-1 law. Under
further assumptions, they also obtain asymptotic normality of the estimator θn and we refer
to Theorem 2 in their paper for a precise statement.

This estimation procedure seems a very promising approach compared to existing method-
ologies and will be taken up in a future article for an estimation on insurance catastrophe
data.

5. Simulation

Efficient simulation algorithms are often the key to widespread application of a model. In
particular, when closed-form results are expensive or not at hand, Monte-Carlo simulation
always provides an alternative which is nowadays often feasible due to available computer
power. Similar to Filipović et al. (2011) we can give general simulation routines for counting
processes in a doubly-stochastic setting following the methodology in Jacod (1975).

Consider a fixed time horizon T . We will use the fact (see Lemma 2.3), that conditional
on the number of jumps of a Poisson process its jump times are equal in distribution to
the order statistics of i.i.d. uniform random variables on [0, T ]. The second key ingredient

will be the time-transform: Ñ(Λ(t)) is a inhomogeneous Poisson process if Ñ is a standard
Poisson process.

We shortly recall our model: N = Ñ ◦ Λ is a time-inhomogeneous Poisson process with
intensity function λ and jump times τ1, τ2, . . . . The shots ξ1, ξ2, . . . are i.i.d. and Rd-valued.
We denote the distribution of ξ1 by Fξ. Then our shot-noise process is given by

St :=
∑
n≥1

1{τn≤t}g(t− τn, ξn), t ≥ 0,

following (4). The insurance claims arrive at times T1, T2, . . . which are doubly-stochastic
random times with cumulated intensity process

Lt = A(t) +
∑
n≥1

1{τn≤t}G(t− τn, ξn).

The claim sizes Z1, Z2, . . . itself are i.i.d. with distribution function FZ .

Algorithm 5.1. Simulate one path of the shot-noise process S and, afterwards, a vector of
claim arrivals together with associated claim sizes. A realized path may be found in Figure
3.

(1) Draw the number of jumps N from a Poisson(Λ(T ))-distribution.
(2) Simulate N i.i.d. U[0,Λ(T )] random variables η1, η2, . . . and set taui := Λ−1(ηi:N ),

i = 1, . . . , N , ηi:N being the i-th order statistic.
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(3) Simulate N i.i.d. random variables ξ1, . . . , ξN (jump heights) according to the chosen
distribution Fξ.

(4) Compute the path L (t) = A(t) +
∑N
i=1 Vih(t− Ti).

(5) Simulate the claim arrival times by taking i.i.d. exponential(1)-random variables
E1, E2, . . . and calculating

Ti = inf{t ≥ 0 : L (t) ≥ E1 + · · ·+ Ei}, i ≥ 1.

(6) Simulate the claim sizes Z1, Z2, . . . from the distribution FZ .
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Figure 3. Simulation of a claims process driven by a shot-noise process
with rational structure. The graph shows the intensity process ` (top), the

cumulated intensity process L (t) =
∫ t

0
`(s)ds (middle) and the simulated

claims process
∑
1{Tn≤t} (bottom).

References

Altmann, T., Schmidt, T. and Stute, W. (2008), ‘A shot noise model for financial assets’,
International Journal of Theoretical and Applied Finance 11(1), 87 – 106.



20 THORSTEN SCHMIDT

Artemis (2013), ‘Catastrophe bond market hits $19 billion outstanding for first time’.
URL: http://www.artemis.bm/blog/2013/10/08/catastrophe-bond-market-hits-19-billion-
outstanding-for-first-time/

Bielecki, T. and Rutkowski, M. (2002), Credit Risk: Modeling, Valuation and Hedging,
Springer Verlag. Berlin Heidelberg New York.
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trizitätsleitern’, Annalen der Physik 362(23), 541 – 567.
Smith, W. (1973), ‘Shot noise generated by a semi-Markov process’, Journal of Applied

Probability 10, 685 – 690.

Chemnitz University of Technology, Reichenhainer Str. 41, 09126 Chemnitz, Germany. Email:

thorsten.schmidt@mathematik.tu-chemnitz.de.


	1. Introduction
	2. Shot-Noise Processes
	2.1. Claims driven by shot-noise processes

	3. Catastrophe bonds
	3.1. Equivalent measure changes
	3.2. Pricing

	4. Estimating shot-noise processes
	5. Simulation
	References

